环境化学
北京
环境科学
污染
甲醛
乙醛
气溶胶
臭氧
化学
挥发性有机化合物
空气污染
中国
生态学
有机化学
法学
生物
政治学
乙醇
作者
Xin Huang,Bin Zhang,Shi-Yong Xia,Yu Han,Chuan Wang,Yu Gui,Na Feng
标识
DOI:10.1016/j.envpol.2020.114152
摘要
Oxygenated volatile organic compounds (OVOCs) are critical precursors of atmospheric ozone (O3) and secondary organic aerosols (SOA). Although China is experiencing increasing O3 pollution from north to south, understanding the major sources of OVOCs in this region is still limited due to their active photochemical behaviors. In this study, five critical OVOCs at a northern urban site (Beijing) and a southern urban site (Shenzhen) were monitored in summer using proton transfer reaction-mass spectrometry (PTR-MS). The mean total concentration of VOCs measured in Beijing (39.4 ppb) was much higher than that measured in Shenzhen (16.7 ppb), with methanol and formaldehyde being the most abundant in concentration at both sites. The source apportionment of daytime OVOCs was conducted effectively using a photochemical age-based parameterization method. Biogenic and anthropogenic secondary sources were the main sources of formaldehyde, acetaldehyde, and acetone at both sites, with a total contribution of 46-82%; acetone also had a large regional-scale background contribution (36-38%); methanol and methyl ethyl ketone (MEK) were mainly derived from anthropogenic primary sources (35-55%) at both sites. In addition, the regional background levels of OVOCs measured in North China were shown to be much higher than those measured in South China. The calculation of the total O3 formation potential (OFP) of OVOCs highlights the comparable contributions from anthropogenic and biogenic sources in both Beijing and Shenzhen, indicating the important role of biogenic OVOC sources even in polluted environments. Since biogenic sources are already important but uncontrollable, anthropogenic emissions in China need to be restricted even more critically in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI