铁酸盐
化学
吸附
氧化剂
X射线光电子能谱
生物炭
砷
傅里叶变换红外光谱
试剂
无机化学
水溶液
核化学
化学工程
有机化学
热解
工程类
作者
Yifan Huang,Minling Gao,Yingxuan Deng,Zulqarnain Haider Khan,Xuewei Liu,Zhengguo Song,Weiwen Qiu
标识
DOI:10.1016/j.scitotenv.2020.136957
摘要
The by-product of the traditional Fenton reaction, colloidal arsenic-‑iron oxide, is migratable and may cause secondary environmental pollution. This paper reported a new strategy involving oxidizing and immobilizing inorganic arsenic using the Fenton reaction, and avoiding the risk of secondary contamination. Lab synthesized ferrihydrite-loaded biochar (FhBC) was developed for oxidizing and binding As(III) and As(V) in aqueous solution. Batch experiments and a series of spectrum analysis (e.g., X-ray photoelectron spectroscopy [XPS], electron paramagnetic resonance [EPR], and Fourier transform infrared spectroscopy [FTIR]) were conducted to study the oxidizing or adsorption capacity and mechanism. The maximum adsorption capacity of FhBC for As(III) and As(V) is 1.315 and 1.325 mmol/g, respectively. In addition, FhBC has an efficient oxidizing capacity within a wide pH range, which is because biochar promotes the Fenton reaction by acting as an electron donator, electron shuttler, or by providing persistent free radicals. Moreover, the adsorption mechanism was studied by FTIR spectroscopy, XPS, and X-ray diffraction (XRD). The formation of internal spherical complexes and iron oxides with a higher degree of crystallization was observed, which indicate that the products of adsorption are stable and robust in a complex environment and can exist in a highly crystallized form after adsorbing arsenic ions. Therefore, the use of FhBC as an adsorbent for arsenic represents a new strategy of using the Fenton reaction while reducing secondary contamination. These results may contribute to further mechanistic studies or extensive practical applications of FhBC.
科研通智能强力驱动
Strongly Powered by AbleSci AI