载流子
材料科学
微尺度化学
钙钛矿(结构)
半导体
纳米技术
卤化物
显微镜
光电子学
吸收(声学)
电荷(物理)
光学
化学
物理
数学教育
结晶学
复合材料
量子力学
无机化学
数学
作者
Géraud Delport,Stuart Macpherson,Samuel D. Stranks
标识
DOI:10.1002/aenm.201903814
摘要
Abstract Halide perovskites have remarkable properties for relatively crudely processed semiconductors, including large optical absorption coefficients and long charge carrier lifetimes. Thanks to such properties, these materials are now competing with established technologies for use in cost‐effective and efficient light‐harvesting and light‐emitting devices. Nevertheless, the fundamental understanding of the behavior of charge carriers in these materials—particularly on the nano‐ to microscale—has, on the whole, lagged behind empirical device performance. Such understanding is essential to control charge carriers, exploit new device structures, and push devices to their performance limits. Among other tools, optical microscopy and spectroscopic techniques have revealed rich information about charge carrier recombination and transport on important length scales. In this progress report, the contribution of time‐resolved optical microscopy techniques to the collective understanding of the photophysics of these materials is detailed. The ongoing technical developments in the field that are overcoming traditional experimental limitations in order to visualize transport properties over multiple time and length scales are discussed. Finally, strategies are proposed to combine optical microscopy with complementary techniques in order to obtain a holistic picture of local carrier photophysics in state‐of‐the‐art perovskite devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI