Wannier函数
从头算
人工神经网络
电介质
从头算量子化学方法
统计物理学
对称(几何)
电荷(物理)
凝聚态物理
计算机科学
计算物理学
材料科学
物理
量子力学
人工智能
数学
分子
几何学
作者
Linfeng Zhang,Mohan Chen,Xifan Wu,Han Wang,E Weinan,Roberto Car
出处
期刊:Physical review
[American Physical Society]
日期:2020-07-22
卷期号:102 (4)
被引量:105
标识
DOI:10.1103/physrevb.102.041121
摘要
We introduce a deep neural network to model in a symmetry preserving way the environmental dependence of the centers of the electronic charge. The model learns from ab-initio density functional theory, wherein the electronic centers are uniquely assigned by the maximally localized Wannier functions. When combined with the Deep Potential model of the atomic potential energy surface, the scheme predicts the dielectric response of insulators for trajectories inaccessible to direct ab-initio simulation. The scheme is non-perturbative and can capture the response of a mutating chemical environment. We demonstrate the approach by calculating the infrared spectra of liquid water at standard conditions, and of ice under extreme pressure, when it transforms from a molecular to an ionic crystal.
科研通智能强力驱动
Strongly Powered by AbleSci AI