亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助鸟Pro采纳,获得10
刚刚
dkw完成签到 ,获得积分10
1秒前
5秒前
年轻花卷完成签到 ,获得积分10
6秒前
mecsxg完成签到,获得积分10
7秒前
小新完成签到 ,获得积分10
7秒前
我不是BOB完成签到,获得积分10
9秒前
9秒前
研友_VZG7GZ应助weiyichen采纳,获得10
10秒前
16秒前
清秀芝麻完成签到 ,获得积分10
17秒前
乐乐应助endlessloop采纳,获得10
18秒前
柳行天完成签到 ,获得积分10
21秒前
乐观小蕊完成签到 ,获得积分10
24秒前
llllll完成签到,获得积分10
25秒前
森距离发布了新的文献求助10
26秒前
郭荣发布了新的文献求助10
27秒前
30秒前
爱吃饼干的土拨鼠完成签到,获得积分10
34秒前
endlessloop发布了新的文献求助10
35秒前
爆米花应助森距离采纳,获得10
36秒前
小eeeeee完成签到 ,获得积分10
36秒前
39秒前
39秒前
endlessloop完成签到,获得积分20
40秒前
量子星尘发布了新的文献求助10
41秒前
OOO完成签到 ,获得积分10
41秒前
愚人发布了新的文献求助10
43秒前
Becky完成签到 ,获得积分10
43秒前
chen发布了新的文献求助10
43秒前
森距离完成签到,获得积分10
45秒前
长情飞丹完成签到,获得积分10
47秒前
48秒前
愚人完成签到,获得积分10
48秒前
Splaink完成签到 ,获得积分10
49秒前
王火火完成签到 ,获得积分10
50秒前
闲鱼耶鹤完成签到 ,获得积分10
53秒前
郭荣完成签到,获得积分10
54秒前
123发布了新的文献求助10
57秒前
ZTLlele完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681113
求助须知:如何正确求助?哪些是违规求助? 5004606
关于积分的说明 15174989
捐赠科研通 4840793
什么是DOI,文献DOI怎么找? 2594460
邀请新用户注册赠送积分活动 1547586
关于科研通互助平台的介绍 1505524