A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比巴卜完成签到,获得积分10
刚刚
2秒前
爱撒娇的大白菜真实的钥匙完成签到 ,获得积分10
3秒前
123发布了新的文献求助10
4秒前
幽凡发布了新的文献求助10
4秒前
秋水发布了新的文献求助10
4秒前
4秒前
5秒前
星辰大海应助ju00采纳,获得10
5秒前
善学以致用应助ju00采纳,获得10
5秒前
顾矜应助ju00采纳,获得10
5秒前
6666应助ju00采纳,获得10
5秒前
文艺的洋葱完成签到,获得积分10
5秒前
所所应助ju00采纳,获得50
5秒前
科研通AI6应助ju00采纳,获得30
5秒前
5秒前
5秒前
6秒前
默默的如豹完成签到,获得积分10
6秒前
6秒前
共享精神应助粗暴的嫣娆采纳,获得10
6秒前
Wind应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
繁星长明应助科研通管家采纳,获得10
8秒前
magiczhu完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Wind应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得20
9秒前
田様应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
ljyimu发布了新的文献求助10
9秒前
李栗子完成签到,获得积分10
10秒前
李健应助宫年采纳,获得10
10秒前
科研通AI6应助感谢采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578642
求助须知:如何正确求助?哪些是违规求助? 4663442
关于积分的说明 14746667
捐赠科研通 4604316
什么是DOI,文献DOI怎么找? 2526915
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465795