A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助hy123123采纳,获得30
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
紧张的眼睛完成签到 ,获得积分10
2秒前
任驰骋完成签到,获得积分10
3秒前
有故无陨完成签到,获得积分10
3秒前
3秒前
AL完成签到,获得积分10
4秒前
清爽的人龙完成签到 ,获得积分10
4秒前
4秒前
5秒前
薏晓完成签到 ,获得积分10
5秒前
6秒前
馨达子发布了新的文献求助10
7秒前
7秒前
Jiayee发布了新的文献求助20
7秒前
darkside发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
魔幻颜发布了新的文献求助10
11秒前
cindy发布了新的文献求助10
11秒前
11秒前
天天向上完成签到 ,获得积分10
12秒前
激昂的吐司完成签到,获得积分10
13秒前
馨达子完成签到,获得积分10
15秒前
Eileen发布了新的文献求助30
16秒前
有脾气的番茄完成签到,获得积分10
16秒前
16秒前
王好完成签到 ,获得积分10
16秒前
17秒前
17秒前
Jasper应助polymer采纳,获得10
17秒前
17秒前
rong发布了新的文献求助10
17秒前
星辰大海应助顺顺顺采纳,获得30
18秒前
18秒前
20秒前
21秒前
老解发布了新的文献求助10
21秒前
Akim应助谭宇华采纳,获得10
22秒前
草莓苹果发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851