已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dpk发布了新的文献求助10
1秒前
Jenny完成签到 ,获得积分10
1秒前
豆儿嘚小豆儿完成签到,获得积分10
2秒前
花痴的战斗机完成签到 ,获得积分10
2秒前
huoxing完成签到 ,获得积分10
3秒前
zhenggc完成签到 ,获得积分10
3秒前
彩虹猫之刃完成签到,获得积分10
3秒前
bkagyin应助cbrown采纳,获得10
6秒前
7秒前
吃颗荔枝吧完成签到,获得积分10
8秒前
cy完成签到 ,获得积分10
9秒前
三愿完成签到 ,获得积分10
9秒前
等乙天发布了新的文献求助10
10秒前
壮观季节发布了新的文献求助20
11秒前
鸣蜩十三完成签到,获得积分10
11秒前
qzp完成签到 ,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
GingerF应助科研通管家采纳,获得50
14秒前
一定accept完成签到 ,获得积分10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
GingerF应助科研通管家采纳,获得50
14秒前
14秒前
明理的亦寒完成签到 ,获得积分10
15秒前
粥大大完成签到 ,获得积分10
17秒前
等乙天完成签到,获得积分10
18秒前
longquan完成签到,获得积分10
20秒前
单薄乐珍完成签到 ,获得积分0
20秒前
lzn完成签到 ,获得积分10
22秒前
22秒前
wenwj9完成签到,获得积分10
22秒前
落寞振家完成签到,获得积分20
23秒前
Bowman完成签到,获得积分10
26秒前
义气翩跹发布了新的文献求助20
27秒前
NexusExplorer应助wenwj9采纳,获得20
28秒前
wsb76完成签到 ,获得积分10
31秒前
小姚姚完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052340
求助须知:如何正确求助?哪些是违规求助? 4279425
关于积分的说明 13339408
捐赠科研通 4094840
什么是DOI,文献DOI怎么找? 2241328
邀请新用户注册赠送积分活动 1247634
关于科研通互助平台的介绍 1176798