重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三山发布了新的文献求助10
刚刚
烟花应助doranlou采纳,获得10
刚刚
刚刚
嗣音完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
gouqi发布了新的文献求助10
1秒前
NexusExplorer应助全都卉采纳,获得10
1秒前
1秒前
缓慢采柳完成签到 ,获得积分10
2秒前
科目三应助哈哈哈哈哈采纳,获得10
3秒前
嘿嘿发布了新的文献求助10
3秒前
3秒前
浮游应助星星采纳,获得10
4秒前
bxbxbx完成签到,获得积分10
4秒前
Serene发布了新的文献求助10
5秒前
5秒前
5秒前
我是老大应助黄钦清采纳,获得10
6秒前
6秒前
许蹦跶完成签到,获得积分10
6秒前
Goolk关注了科研通微信公众号
7秒前
英俊的铭应助李周采纳,获得10
7秒前
榴莲奶黄包完成签到,获得积分10
7秒前
汪金完成签到,获得积分10
7秒前
纯真电源发布了新的文献求助10
7秒前
ding应助圈圈采纳,获得10
8秒前
天才关注了科研通微信公众号
8秒前
8秒前
orixero应助张铭娟采纳,获得10
8秒前
franken完成签到,获得积分10
8秒前
健忘之卉完成签到,获得积分10
8秒前
心悦臣服发布了新的文献求助30
9秒前
NexusExplorer应助余语羽采纳,获得10
9秒前
bxbxbx发布了新的文献求助10
9秒前
邵开山完成签到,获得积分10
9秒前
好旺发布了新的文献求助10
10秒前
10秒前
10秒前
zzyzz完成签到 ,获得积分10
10秒前
xiaojie发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567