亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
爆米花应助CC采纳,获得10
41秒前
52秒前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
Enso发布了新的文献求助30
1分钟前
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
LIU完成签到,获得积分10
2分钟前
Akim应助洛森采纳,获得10
2分钟前
缓慢的小兔子完成签到,获得积分10
2分钟前
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
丘比特应助麻辣香锅采纳,获得10
2分钟前
Enso发布了新的文献求助30
2分钟前
威武千青发布了新的文献求助10
3分钟前
洛森完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
洛森发布了新的文献求助10
3分钟前
英俊的铭应助Maeve采纳,获得10
3分钟前
wang完成签到 ,获得积分10
3分钟前
Kristopher完成签到 ,获得积分10
3分钟前
正在努力的学术小垃圾完成签到 ,获得积分10
3分钟前
3分钟前
Maeve发布了新的文献求助10
3分钟前
特昂唐完成签到 ,获得积分10
4分钟前
科研通AI6应助科研之路采纳,获得10
4分钟前
Mrzrgh发布了新的文献求助10
4分钟前
汪洋一叶完成签到,获得积分10
4分钟前
5分钟前
852应助机智的佳肴采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
王平安完成签到 ,获得积分10
6分钟前
魔幻的芳完成签到,获得积分10
6分钟前
悲凉的忆南完成签到,获得积分10
6分钟前
Ruby发布了新的文献求助20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622214
求助须知:如何正确求助?哪些是违规求助? 4707219
关于积分的说明 14938928
捐赠科研通 4769330
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514336
关于科研通互助平台的介绍 1475038