A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会思考的狐狸完成签到 ,获得积分10
1秒前
活泼的似狮完成签到,获得积分10
3秒前
Nicole完成签到 ,获得积分10
5秒前
jeffrey完成签到,获得积分10
5秒前
传奇3应助daheeeee采纳,获得10
8秒前
Joy完成签到,获得积分10
8秒前
赛赛完成签到,获得积分10
11秒前
ww完成签到,获得积分10
11秒前
今后应助哦哦哦哦哦采纳,获得10
12秒前
席江海完成签到,获得积分10
12秒前
you完成签到,获得积分10
13秒前
HCKACECE完成签到 ,获得积分10
15秒前
LinYX完成签到,获得积分10
17秒前
微生完成签到 ,获得积分10
18秒前
LLL完成签到,获得积分10
19秒前
雪山飞龙完成签到,获得积分10
20秒前
加贝完成签到 ,获得积分10
20秒前
世佳何完成签到,获得积分10
21秒前
28秒前
居里姐姐完成签到 ,获得积分10
28秒前
刘刘完成签到,获得积分10
30秒前
Eliii完成签到 ,获得积分10
32秒前
ccl完成签到,获得积分10
35秒前
35秒前
xiaofenzi完成签到,获得积分10
37秒前
七月星河完成签到 ,获得积分10
38秒前
Radish完成签到 ,获得积分10
39秒前
aaaaaa完成签到,获得积分10
42秒前
天下一番完成签到,获得积分10
45秒前
我的白起是国服完成签到 ,获得积分10
47秒前
LEE123完成签到,获得积分10
49秒前
奶俊啵啵完成签到 ,获得积分10
51秒前
啊唔完成签到 ,获得积分10
52秒前
阳光万声完成签到 ,获得积分10
53秒前
疯狂吃辣完成签到 ,获得积分10
56秒前
wang完成签到 ,获得积分10
58秒前
向往生活发布了新的文献求助10
59秒前
59秒前
吃吃货完成签到 ,获得积分10
59秒前
李凤凤完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784851
关于积分的说明 7768939
捐赠科研通 2440310
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624945
版权声明 600792