A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助划一道掌纹采纳,获得20
刚刚
3秒前
科研通AI2S应助Song0558采纳,获得10
3秒前
sun发布了新的文献求助10
4秒前
nn完成签到 ,获得积分10
5秒前
6秒前
6秒前
10秒前
11秒前
11秒前
康康发布了新的文献求助10
11秒前
花花完成签到,获得积分10
11秒前
curtain完成签到,获得积分10
12秒前
14秒前
温冰雪应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
温冰雪应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
May应助科研通管家采纳,获得20
14秒前
华仔应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得40
14秒前
ED应助科研通管家采纳,获得10
14秒前
dinghaifeng应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
打打应助zhang采纳,获得10
17秒前
笨笨的复天完成签到,获得积分10
17秒前
llllp发布了新的文献求助10
18秒前
dodo应助Yang采纳,获得200
18秒前
撒西不理发布了新的文献求助10
21秒前
丘比特应助hehe采纳,获得10
21秒前
Eleven完成签到,获得积分10
21秒前
谨慎的哈密瓜完成签到 ,获得积分10
21秒前
阿森发布了新的文献求助10
22秒前
lemon完成签到,获得积分10
22秒前
22秒前
大耳朵涂涂完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511