A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM)

定量磁化率图 成像体模 管道(软件) 人工智能 深度学习 计算机科学 合成数据 数据集 模式识别(心理学) 数学 物理 核医学 磁共振成像 医学 放射科 程序设计语言
作者
Zuojun Wang,Peng Xia,Fan Huang,Hongjiang Wei,Edward Sai-Kam Hui,Henry Ka‐Fung Mak,Peng Cao
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:88: 89-100 被引量:2
标识
DOI:10.1016/j.mri.2022.01.018
摘要

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification. The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS ( N = 1), and clinical data from a Parkinson's disease cohort ( N = 71) and small-vessel disease cohort ( N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting. On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM. Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薛定谔的猫完成签到,获得积分10
2秒前
zjh33完成签到,获得积分10
2秒前
22发布了新的文献求助10
2秒前
小蘑菇应助Zzzyy采纳,获得30
2秒前
2秒前
科研通AI2S应助史淼荷采纳,获得20
2秒前
科研通AI6.1应助史淼荷采纳,获得50
2秒前
安铸发布了新的文献求助10
3秒前
3秒前
Dr_Fang完成签到,获得积分10
4秒前
毛小毛发布了新的文献求助30
4秒前
jiang完成签到,获得积分10
4秒前
ying完成签到,获得积分10
5秒前
zjh33发布了新的文献求助10
6秒前
zhangjworks完成签到,获得积分20
6秒前
xxxxxxx发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
雪白依云完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6.1应助FEN采纳,获得10
8秒前
8秒前
万能图书馆应助轩辕十四采纳,获得10
11秒前
together完成签到,获得积分10
12秒前
愉快如天发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
tang完成签到,获得积分10
14秒前
笑点低钥匙完成签到,获得积分10
15秒前
15秒前
15秒前
孟虹沅应助Peng采纳,获得10
15秒前
许烨完成签到,获得积分10
16秒前
科研通AI6.1应助而与白醋采纳,获得10
16秒前
Lucas应助佳佳爱学习采纳,获得30
17秒前
22完成签到,获得积分10
18秒前
18秒前
18秒前
CipherSage应助MQ采纳,获得20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133