A Comprehensive Survey on Graph Neural Networks

计算机科学 图形 人工神经网络 理论计算机科学 人工智能
作者
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 4-24 被引量:3357
标识
DOI:10.1109/tnnls.2020.2978386
摘要

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial-temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助沉默的妙竹采纳,获得10
1秒前
Irelia完成签到,获得积分10
1秒前
4秒前
sh1058408568发布了新的文献求助10
4秒前
Gossip发布了新的文献求助10
5秒前
Ansen发布了新的文献求助10
5秒前
6秒前
CHOSENONE完成签到,获得积分10
6秒前
6秒前
7秒前
水博士完成签到,获得积分10
10秒前
Hello应助孟见你采纳,获得10
10秒前
不会游泳的鱼完成签到 ,获得积分10
10秒前
judy发布了新的文献求助10
12秒前
young完成签到,获得积分10
13秒前
15秒前
在水一方应助Lxxxxx采纳,获得10
16秒前
18秒前
19秒前
20秒前
SONGYILIU发布了新的文献求助10
20秒前
桃酥发布了新的文献求助10
24秒前
dava应助爱科研的小冀采纳,获得10
25秒前
华仔应助胡多采纳,获得10
25秒前
25秒前
25秒前
充电宝应助zkokijhfuhwh采纳,获得10
26秒前
Clay发布了新的文献求助30
26秒前
29秒前
糕糕发布了新的文献求助30
29秒前
Lxxxxx发布了新的文献求助10
31秒前
星辰大海应助忧伤的元菱采纳,获得10
31秒前
英姑应助sudaxia100采纳,获得10
33秒前
SONGYILIU完成签到,获得积分20
34秒前
34秒前
34秒前
深情安青应助蝉时雨采纳,获得10
35秒前
谨慎的啤酒完成签到 ,获得积分10
36秒前
jiangnan完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 820
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748807
求助须知:如何正确求助?哪些是违规求助? 3291834
关于积分的说明 10074679
捐赠科研通 3007571
什么是DOI,文献DOI怎么找? 1651675
邀请新用户注册赠送积分活动 786660
科研通“疑难数据库(出版商)”最低求助积分说明 751801