Deep Cascade Residual Networks (DCRNs): Optimizing an Encoder–Decoder Convolutional Neural Network for Low-Dose CT Imaging

增采样 计算机科学 残余物 深度学习 卷积神经网络 编码器 人工智能 降噪 噪音(视频) 扫描仪 还原(数学) 计算机视觉 算法 图像(数学) 数学 操作系统 几何学
作者
Zhenxing Huang,Zixiang Chen,Guotao Quan,Yuzhe Du,Yongfeng Yang,Xin Liu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:6 (8): 829-840 被引量:16
标识
DOI:10.1109/trpms.2022.3150322
摘要

To suppress noise and artifacts caused by the reduced radiation exposure in low-dose computed tomography, several deep learning (DL)-based image restoration methods have been proposed over the past few years. Many of these popular DL-based methods adopt an encoder–decoder framework, for instance, the residual encoder–decoder convolutional neural network. However, this popular framework may suffer from information loss for continual downsampling operations. In this article, deep cascaded residual networks (DCRNs) are proposed to optimize the popular encoder–decoder network. First, cross up- and downsampling operations as well as attention extraction are substitutes for the strict “downsampling and then upping” principle. What is more, four hybrid loss functions, namely, mean absolute error, edge loss, perceptual loss and adversarial loss, are engaged to achieve better visual effects and suppress noise. The experiments are conducted on three individual clinical CT datasets: dental CT data collected with a scanner manufactured by Zhongke Tianyue Company (ZTC), data from the American Association of Physicists in Medicine (AAPM) Challenge, and data collected with a commercial CT scanner from United Imaging Healthcare (UIH). The experimental results indicate the effective noise reduction and detail preservation capabilities of the proposed methods under different radiation dose-reduction strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LZH完成签到,获得积分20
1秒前
2秒前
2秒前
小鼠星球发布了新的文献求助10
3秒前
刘玥言完成签到,获得积分20
3秒前
Harper完成签到,获得积分10
3秒前
Flynn完成签到,获得积分10
3秒前
一番完成签到,获得积分10
3秒前
huyuan发布了新的文献求助10
3秒前
逆蝶发布了新的文献求助10
4秒前
5秒前
GQZM发布了新的文献求助10
5秒前
别来无恙发布了新的文献求助10
6秒前
7秒前
受伤灵薇完成签到,获得积分10
8秒前
8秒前
zhull应助LZH采纳,获得10
9秒前
无情的宛儿完成签到,获得积分10
10秒前
10秒前
外向贞发布了新的文献求助10
12秒前
一番发布了新的文献求助10
12秒前
刘玥言发布了新的文献求助10
12秒前
13秒前
LJQ发布了新的文献求助30
13秒前
14秒前
15秒前
SQzy发布了新的文献求助10
15秒前
001完成签到,获得积分10
16秒前
CipherSage应助泡泡儿采纳,获得10
17秒前
淡淡衣完成签到,获得积分10
17秒前
18秒前
19秒前
王十二完成签到 ,获得积分10
19秒前
程程发布了新的文献求助10
20秒前
mushroomdoor发布了新的文献求助10
20秒前
SYLH应助LZH采纳,获得20
21秒前
罗wq发布了新的文献求助10
21秒前
jiangmingjiao完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916