Deep Cascade Residual Networks (DCRNs): Optimizing an Encoder–Decoder Convolutional Neural Network for Low-Dose CT Imaging

增采样 计算机科学 残余物 深度学习 卷积神经网络 编码器 人工智能 降噪 噪音(视频) 扫描仪 还原(数学) 计算机视觉 算法 图像(数学) 数学 操作系统 几何学
作者
Zhenxing Huang,Zixiang Chen,Guotao Quan,Yuzhe Du,Yongfeng Yang,Xin Liu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:6 (8): 829-840 被引量:16
标识
DOI:10.1109/trpms.2022.3150322
摘要

To suppress noise and artifacts caused by the reduced radiation exposure in low-dose computed tomography, several deep learning (DL)-based image restoration methods have been proposed over the past few years. Many of these popular DL-based methods adopt an encoder–decoder framework, for instance, the residual encoder–decoder convolutional neural network. However, this popular framework may suffer from information loss for continual downsampling operations. In this article, deep cascaded residual networks (DCRNs) are proposed to optimize the popular encoder–decoder network. First, cross up- and downsampling operations as well as attention extraction are substitutes for the strict “downsampling and then upping” principle. What is more, four hybrid loss functions, namely, mean absolute error, edge loss, perceptual loss and adversarial loss, are engaged to achieve better visual effects and suppress noise. The experiments are conducted on three individual clinical CT datasets: dental CT data collected with a scanner manufactured by Zhongke Tianyue Company (ZTC), data from the American Association of Physicists in Medicine (AAPM) Challenge, and data collected with a commercial CT scanner from United Imaging Healthcare (UIH). The experimental results indicate the effective noise reduction and detail preservation capabilities of the proposed methods under different radiation dose-reduction strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助淡定的不言采纳,获得10
刚刚
1秒前
tepqi完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
毛於菟发布了新的文献求助10
3秒前
4秒前
容二遥关注了科研通微信公众号
4秒前
布噜噜噜噜完成签到,获得积分10
4秒前
4秒前
5秒前
大模型应助eblog采纳,获得10
5秒前
Ting发布了新的文献求助20
5秒前
6秒前
端庄龙猫发布了新的文献求助30
6秒前
juaner完成签到,获得积分10
6秒前
KAI发布了新的文献求助10
7秒前
天天快乐应助二维马采纳,获得10
7秒前
7秒前
徐sir发布了新的文献求助10
7秒前
牛战士完成签到,获得积分10
8秒前
FSS完成签到,获得积分20
8秒前
YANYAN发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
cc应助Kycg采纳,获得20
9秒前
alan完成签到,获得积分10
9秒前
9秒前
muchen发布了新的文献求助10
10秒前
11秒前
JJ发布了新的文献求助10
12秒前
12秒前
小兵发布了新的文献求助10
12秒前
13秒前
lsl599应助guojingjing采纳,获得10
13秒前
淡然胡萝卜完成签到,获得积分10
13秒前
15秒前
tan_sg发布了新的文献求助10
16秒前
无极微光应助Ting采纳,获得20
16秒前
CodeCraft应助夙念采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049