光催化
污染物
材料科学
对偶(语法数字)
光化学
可见光谱
有机合成
化学工程
双重角色
化学
纳米技术
催化作用
光电子学
有机化学
组合化学
艺术
文学类
工程类
作者
Zheng Zhang,Yanmei Zheng,Hang Xie,Jianjie Zhao,Xinli Guo,Weijie Zhang,Qiuping Fu,Shaohua Wang,Qiang Xu,Ying Huang
标识
DOI:10.1016/j.jallcom.2022.164028
摘要
The g-C3N4 (CN) microrods with superficial C, N dual vacancies were synthesized by facial thermal polymerization of melamine--cyanuric acid supramolecular (MCS) precursors under H2 flow. Compared with bulk g-C3N4 (BCN), the as-synthesized defective CN microrods with an increased specific surface area exhibit an enhanced photocatalytic performance with a kinetic constant (K) of ~0.19 min−1 for RhB degradation and an ~718.36 µmol g−1h−1 for H2O2 production rate, which are about~17-fold and ~3-fold higher than that of BCN, respectively. The C, N dual vacancies are very effective in reducing the bandgap and inhibiting carrier recombination. The pivotal active species in RhB degradation is determined to be·O2-, and the pathway of H2O2 production is confirmed as a sequential two-step single-electron reduction. The results have provided a great potential way to promote the practical application of CN for photocatalytic organic pollutant removal and H2O2 production.
科研通智能强力驱动
Strongly Powered by AbleSci AI