THE HYDRAULIC AND THERMAL PERFORMANCES OF RECTANGULAR AND SQUARE MICROCHANNEL WITH DIFFERENT HYDRAULIC DIAMETERS COOLED BY GRAPHENE-PLATINUM HYBRID NANOFLUID

压力降 微通道 水力直径 纳米流体 材料科学 雷诺数 传热系数 传热 热阻 机械 强化传热 热工水力学 复合材料 热力学 纳米技术 物理 湍流
作者
Rajendra Kumar Avinash Kumar,Kavitha Manikkavasagan,Manoj Kumar P,Arvindh Seshadri S
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (13): 7473-7483 被引量:2
标识
DOI:10.1177/09544062211072706
摘要

The objective of this paper is to analyze the effect of hydraulic diameter and channel shape on the thermal and hydrodynamic characteristics of a microchannel cooled by Graphene–Platinum/water hybrid nanofluid for electronic cooling applications. The study was performed numerically using mathematical software called Maple 19.0. Microchannels having square and rectangular cross-sections, and hydraulic diameters ranging from 200 µm to 1,000 µm were taken into consideration. Thermal resistance, heat transfer coefficient, pressure drop, and friction factor were evaluated for different conditions and their corresponding graphs are presented and discussed. It was evident from the results that low thermal resistance and high heat transfer coefficient was achieved upon decreasing the hydraulic diameter, which is favorable for the cooling of electronic chips and devices. Based on the Reynolds number, the heat transfer coefficient increased by 2–4 times for both rectangular and square microchannels, on decreasing the hydraulic diameter from highest value (1,000 µm) to lowest value (200 µm). However, friction factor and pressure drop increased for channels with lower hydraulic diameters. In addition, rectangular microchannels exhibited better heat transfer performance, while square microchannels had lower friction factor and pressure drop. Rectangular microchannels presented a maximum enhancement of 30% in heat transfer coefficient and a reduction of 18% in thermal resistance, when compared to square microchannels. The results also suggested that the performance of microchannels with 500 µm hydraulic diameter is balanced, considering both heat transfer performance and pressure drop constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼梯口无头女孩完成签到,获得积分10
2秒前
2秒前
Grayball应助gg采纳,获得10
2秒前
2秒前
456发布了新的文献求助10
2秒前
3秒前
凤凰山发布了新的文献求助10
3秒前
独特的绿蝶完成签到,获得积分10
3秒前
3秒前
清歌扶酒发布了新的文献求助10
3秒前
东风完成签到,获得积分10
4秒前
5秒前
呆萌幼晴完成签到,获得积分10
5秒前
qinqiny完成签到 ,获得积分10
6秒前
6秒前
周小慧完成签到,获得积分20
6秒前
轻松的人龙完成签到,获得积分20
6秒前
小蘑菇应助yxf采纳,获得10
6秒前
1199关注了科研通微信公众号
6秒前
星辰大海应助小赞芽采纳,获得10
6秒前
郑开司09发布了新的文献求助10
7秒前
溪与芮行完成签到 ,获得积分10
7秒前
QS完成签到,获得积分10
7秒前
彭于晏应助Stanley采纳,获得10
9秒前
小二郎应助Stanley采纳,获得10
9秒前
扑通扑通通完成签到 ,获得积分10
9秒前
lgh完成签到,获得积分10
10秒前
研友_ZAVod8发布了新的文献求助10
10秒前
10秒前
打打应助贤惠的豪英采纳,获得10
11秒前
仙子狗尾巴花完成签到,获得积分10
11秒前
虎咪咪完成签到,获得积分10
11秒前
liyi发布了新的文献求助10
11秒前
悠旷完成签到 ,获得积分10
11秒前
dingdong完成签到,获得积分20
11秒前
11秒前
科研通AI5应助凤凰山采纳,获得10
11秒前
碱性沉默完成签到,获得积分10
11秒前
晓晖完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762