Learning to Collude in a Pricing Duopoly

双头垄断 微观经济学 经济 竞赛(生物学) 收入 竞争对手分析 趋同(经济学) 限价 计算机科学 数理经济学 古诺竞争 价格水平 会计 生物 凯恩斯经济学 经济增长 管理 生态学
作者
Janusz M Meylahn,Arnoud V. den Boer
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2577-2594 被引量:23
标识
DOI:10.1287/msom.2021.1074
摘要

Problem definition: This paper addresses the question whether or not self-learning algorithms can learn to collude instead of compete against each other, without violating existing competition law. Academic/practical relevance: This question is practically relevant (and hotly debated) for competition regulators, and academically relevant in the area of analysis of multi-agent data-driven algorithms. Methodology: We construct a price algorithm based on simultaneous-perturbation Kiefer–Wolfowitz recursions. We derive theoretical bounds on its limiting behavior of prices and revenues, in the case that both sellers in a duopoly independently use the algorithm, and in the case that one seller uses the algorithm and the other seller sets prices competitively. Results: We mathematically prove that, if implemented independently by two price-setting firms in a duopoly, prices will converge to those that maximize the firms’ joint revenue in case this is profitable for both firms, and to a competitive equilibrium otherwise. We prove this latter convergence result under the assumption that the firms use a misspecified monopolist demand model, thereby providing evidence for the so-called market-response hypothesis that both firms’ pricing as a monopolist may result in convergence to a competitive equilibrium. If the competitor is not willing to collaborate but prices according to a strategy from a certain class of strategies, we prove that the prices generated by our algorithm converge to a best-response to the competitor’s limit price. Managerial implications: Our algorithm can learn to collude under self-play while simultaneously learn to price competitively against a ‘regular’ competitor, in a setting where the price-demand relation is unknown and within the boundaries of competition law. This demonstrates that algorithmic collusion is a genuine threat in realistic market scenarios. Moreover, our work exemplifies how algorithms can be explicitly designed to learn to collude, and demonstrates that algorithmic collusion is facilitated (a) by the empirically observed practice of (explicitly or implicitly) sharing demand information, and (b) by allowing different firms in a market to use the same price algorithm. These are important and concrete insights for lawmakers and competition policy professionals struggling with how to respond to algorithmic collusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳yang发布了新的文献求助10
刚刚
1秒前
wang1090发布了新的文献求助30
2秒前
呜呜呜呜完成签到,获得积分10
2秒前
2秒前
Riki发布了新的文献求助10
3秒前
88发布了新的文献求助10
3秒前
4秒前
充电宝应助zfy采纳,获得10
5秒前
sak完成签到,获得积分10
6秒前
Shuo Yang发布了新的文献求助20
6秒前
呜呜呜呜发布了新的文献求助10
6秒前
在水一方应助hhzz采纳,获得10
6秒前
旧是完成签到 ,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
杨小胖完成签到 ,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
mm发布了新的文献求助10
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
shouyu29应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
RC_Wang应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
sutharsons应助科研通管家采纳,获得30
9秒前
归海含烟完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
shire应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808