Learning to Collude in a Pricing Duopoly

双头垄断 微观经济学 经济 竞赛(生物学) 收入 竞争对手分析 趋同(经济学) 限价 计算机科学 数理经济学 古诺竞争 价格水平 会计 生物 凯恩斯经济学 经济增长 管理 生态学
作者
Janusz M Meylahn,Arnoud V. den Boer
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2577-2594 被引量:23
标识
DOI:10.1287/msom.2021.1074
摘要

Problem definition: This paper addresses the question whether or not self-learning algorithms can learn to collude instead of compete against each other, without violating existing competition law. Academic/practical relevance: This question is practically relevant (and hotly debated) for competition regulators, and academically relevant in the area of analysis of multi-agent data-driven algorithms. Methodology: We construct a price algorithm based on simultaneous-perturbation Kiefer–Wolfowitz recursions. We derive theoretical bounds on its limiting behavior of prices and revenues, in the case that both sellers in a duopoly independently use the algorithm, and in the case that one seller uses the algorithm and the other seller sets prices competitively. Results: We mathematically prove that, if implemented independently by two price-setting firms in a duopoly, prices will converge to those that maximize the firms’ joint revenue in case this is profitable for both firms, and to a competitive equilibrium otherwise. We prove this latter convergence result under the assumption that the firms use a misspecified monopolist demand model, thereby providing evidence for the so-called market-response hypothesis that both firms’ pricing as a monopolist may result in convergence to a competitive equilibrium. If the competitor is not willing to collaborate but prices according to a strategy from a certain class of strategies, we prove that the prices generated by our algorithm converge to a best-response to the competitor’s limit price. Managerial implications: Our algorithm can learn to collude under self-play while simultaneously learn to price competitively against a ‘regular’ competitor, in a setting where the price-demand relation is unknown and within the boundaries of competition law. This demonstrates that algorithmic collusion is a genuine threat in realistic market scenarios. Moreover, our work exemplifies how algorithms can be explicitly designed to learn to collude, and demonstrates that algorithmic collusion is facilitated (a) by the empirically observed practice of (explicitly or implicitly) sharing demand information, and (b) by allowing different firms in a market to use the same price algorithm. These are important and concrete insights for lawmakers and competition policy professionals struggling with how to respond to algorithmic collusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿巴阿哲完成签到,获得积分10
1秒前
斯文败类应助Tiffany采纳,获得10
1秒前
两栖玩家完成签到 ,获得积分10
1秒前
任性白卉完成签到 ,获得积分10
2秒前
张丫丫发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
2秒前
CipherSage应助鑫鑫采纳,获得10
2秒前
文艺的曼柔完成签到 ,获得积分10
2秒前
2秒前
传奇3应助Mansis采纳,获得10
2秒前
东木应助风清扬采纳,获得100
3秒前
快乐的海亦完成签到,获得积分20
4秒前
南宫清涟完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
灰灰完成签到 ,获得积分10
6秒前
maomao完成签到,获得积分10
6秒前
6秒前
楚舜华完成签到,获得积分10
6秒前
7秒前
111发布了新的文献求助10
7秒前
7秒前
Jess完成签到,获得积分10
8秒前
木心应助南宫清涟采纳,获得20
8秒前
橙色小瓶子完成签到,获得积分10
8秒前
8秒前
Michael_li完成签到,获得积分10
8秒前
领导范儿应助A2150530290采纳,获得10
8秒前
跳跃毒娘发布了新的文献求助10
8秒前
深情安青应助yn采纳,获得10
9秒前
9秒前
9秒前
六便士在攒完成签到,获得积分10
9秒前
黑加仑发布了新的文献求助10
9秒前
SciGPT应助hanzhou1314采纳,获得30
10秒前
gxmu6322发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582