Learning to Collude in a Pricing Duopoly

双头垄断 微观经济学 经济 竞赛(生物学) 收入 竞争对手分析 趋同(经济学) 限价 计算机科学 数理经济学 古诺竞争 价格水平 会计 生物 凯恩斯经济学 经济增长 管理 生态学
作者
Janusz M Meylahn,Arnoud V. den Boer
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2577-2594 被引量:23
标识
DOI:10.1287/msom.2021.1074
摘要

Problem definition: This paper addresses the question whether or not self-learning algorithms can learn to collude instead of compete against each other, without violating existing competition law. Academic/practical relevance: This question is practically relevant (and hotly debated) for competition regulators, and academically relevant in the area of analysis of multi-agent data-driven algorithms. Methodology: We construct a price algorithm based on simultaneous-perturbation Kiefer–Wolfowitz recursions. We derive theoretical bounds on its limiting behavior of prices and revenues, in the case that both sellers in a duopoly independently use the algorithm, and in the case that one seller uses the algorithm and the other seller sets prices competitively. Results: We mathematically prove that, if implemented independently by two price-setting firms in a duopoly, prices will converge to those that maximize the firms’ joint revenue in case this is profitable for both firms, and to a competitive equilibrium otherwise. We prove this latter convergence result under the assumption that the firms use a misspecified monopolist demand model, thereby providing evidence for the so-called market-response hypothesis that both firms’ pricing as a monopolist may result in convergence to a competitive equilibrium. If the competitor is not willing to collaborate but prices according to a strategy from a certain class of strategies, we prove that the prices generated by our algorithm converge to a best-response to the competitor’s limit price. Managerial implications: Our algorithm can learn to collude under self-play while simultaneously learn to price competitively against a ‘regular’ competitor, in a setting where the price-demand relation is unknown and within the boundaries of competition law. This demonstrates that algorithmic collusion is a genuine threat in realistic market scenarios. Moreover, our work exemplifies how algorithms can be explicitly designed to learn to collude, and demonstrates that algorithmic collusion is facilitated (a) by the empirically observed practice of (explicitly or implicitly) sharing demand information, and (b) by allowing different firms in a market to use the same price algorithm. These are important and concrete insights for lawmakers and competition policy professionals struggling with how to respond to algorithmic collusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助wengjiaqi采纳,获得10
1秒前
mtfx发布了新的文献求助10
1秒前
烟花应助寂寞的访冬采纳,获得30
2秒前
Ler发布了新的文献求助10
3秒前
852应助xxxxy采纳,获得10
3秒前
4秒前
4秒前
6秒前
文静三颜发布了新的文献求助10
7秒前
luyee发布了新的文献求助10
8秒前
Ler完成签到,获得积分10
10秒前
大力的问蕊完成签到,获得积分10
10秒前
577610822发布了新的文献求助10
10秒前
完美世界应助伍嗲嗲采纳,获得10
11秒前
13秒前
NPC-CBI完成签到,获得积分10
14秒前
15秒前
阿利呀发布了新的文献求助20
16秒前
记性好的dunk完成签到 ,获得积分10
16秒前
蒋时晏应助kingwill采纳,获得30
18秒前
CipherSage应助淡然平灵采纳,获得10
18秒前
19秒前
文静三颜发布了新的文献求助10
20秒前
离言完成签到,获得积分20
20秒前
24秒前
24秒前
伍嗲嗲发布了新的文献求助10
25秒前
大模型应助oath采纳,获得10
28秒前
123Y发布了新的文献求助10
29秒前
29秒前
碧蓝板栗发布了新的文献求助20
29秒前
方越应助珂伟采纳,获得10
30秒前
深情飞丹完成签到 ,获得积分10
30秒前
李健应助伍嗲嗲采纳,获得10
31秒前
32秒前
共享精神应助Rainna采纳,获得10
32秒前
33秒前
蒋时晏应助1Yer6采纳,获得30
35秒前
丘比特应助啊杨丶采纳,获得10
36秒前
ubiqutin发布了新的文献求助10
36秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330054
求助须知:如何正确求助?哪些是违规求助? 2959691
关于积分的说明 8596435
捐赠科研通 2638078
什么是DOI,文献DOI怎么找? 1444156
科研通“疑难数据库(出版商)”最低求助积分说明 668964
邀请新用户注册赠送积分活动 656559