Convolutional Neural Network for Accurate Analysis of Methamphetamine With Upconversion Lateral Flow Biosensor

甲基苯丙胺 卷积神经网络 荧光 计算机科学 人工智能 生物系统 模式识别(心理学) 物理 医学 药理学 生物 光学
作者
Lei Huang,Shulin Tian,Wenhao Zhao,Ke Liu,Xing Ma,Jinhong Guo
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (1): 38-44 被引量:5
标识
DOI:10.1109/tnb.2022.3143860
摘要

Methamphetamine is a powerful stimulant drug, the abuse of which threatens human health and social stability. Rapid and accurate quantification of methamphetamine is essential to inhibit the abuse and prevalence of methamphetamine effectively. In this paper, we present a portable fluorescence reader with upconverting nanoparticle-labeled lateral flow immunoassay (LFIA) for rapid and accurate quantification of methamphetamine. Based on specific binding of a methamphetamine antigen to an antibody in the LFIA, the fluorescence reader is designed to capture and record the fluorescence intensities T and C of the test and control lines, respectively, and the T/C ratio is calculated to determine the concentration of methamphetamine. The linear range for methamphetamine is 0.1-100 ng/mL. Because the sensor is often susceptible to noise interference, using only the T/C ratio to distinguish weakly positive and negative samples of methamphetamine renders the results inaccurate. To solve this problem, we applied a convolutional neural network (CNN) to learn image features of different methamphetamine concentrations (0, 0.01, 0.05, 0.1, and 0.5 ng/mL) for accurate detection of weakly positive and negative samples. The results show that the proposed method can effectively detect weakly positive and negative samples of methamphetamine with an accuracy of up to 92%. The CNN provides a novel scheme for accurate analysis of weakly positive and negative samples in upconverting nanoparticle-labeled LFIA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穿堂风完成签到,获得积分10
2秒前
3秒前
缥缈忻完成签到,获得积分10
3秒前
4秒前
ASH发布了新的文献求助10
7秒前
852应助如意代秋采纳,获得10
8秒前
祝愿发布了新的文献求助10
8秒前
11秒前
11秒前
daoyi完成签到,获得积分10
12秒前
12秒前
13秒前
16秒前
flow完成签到,获得积分10
17秒前
123gg发布了新的文献求助10
17秒前
zong2807完成签到,获得积分10
18秒前
阿菜完成签到,获得积分10
18秒前
泥嚎发布了新的文献求助10
19秒前
21秒前
tuanheqi应助研友_LXjjOZ采纳,获得150
21秒前
酷波er应助北北采纳,获得10
24秒前
田様应助CHRIS采纳,获得10
24秒前
小焦儿完成签到,获得积分10
25秒前
万能图书馆应助坚定白风采纳,获得10
25秒前
丘比特应助小任性采纳,获得10
25秒前
所所应助liziqi采纳,获得10
26秒前
雪白的夏山完成签到,获得积分10
33秒前
失眠的广山完成签到 ,获得积分10
33秒前
38秒前
39秒前
星辰大海应助大喵采纳,获得10
41秒前
42秒前
43秒前
43秒前
keyantong发布了新的文献求助10
43秒前
薛妖怪发布了新的文献求助10
43秒前
小任性发布了新的文献求助10
44秒前
南瓜饼完成签到,获得积分10
45秒前
漂亮白枫发布了新的文献求助10
46秒前
zhxq发布了新的文献求助10
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190