已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning for Sonic Logs Prediction: A Case Study from the Niger Delta Basin in the Gulf of Guinea

均方误差 尼日尔三角洲 离群值 缺少数据 人工智能 测井 机器学习 数据预处理 计算机科学 数据挖掘 模式识别(心理学) 地质学 统计 三角洲 数学 工程类 石油工程 航空航天工程
作者
Ibrahim Tinni Tahiru,Olatunbosun Olagundoye,Abdulquadri O. Alabere
标识
DOI:10.2523/iptc-21932-ms
摘要

Abstract Sonic logs are very essential for rock type identification, hydrocarbon typing, rock physics modelling, and reservoir characterization. However, they are seldom available due to high costs of acquisition or measurement errors. Empirical formulas and petroelastic models that are often used to predict missing sonic log data may not produce accurate velocity profiles and are limited to specific geologic settings. Using sonic logs from wells in the CONDA field located in the deep offshore Niger delta basin of the Gulf of Guinea, we demonstrate that machine learning algorithms can be used to predict sonic log data if suitable quantitative relationships exists between it and available well logs. Preprocessing such as outlier removal, missing data filling and normalization was applied to the well logs before using them as training datasets for the model prior to applying several machine learning algorithms to build a predictor model for missing DTP and DTS sonic logs. The results of the training using several machine learning algorithms showed that the Gradient Boost Regressor (GBRT) Algorithm was more robust based on higher accuracy and lower root-mean-squared errors (RMSE). Validation of the prediction model at blind wells was quite good, with coefficient of determination or goodness-of-fit (R2) scores of 0.88 to 0.99 and generally low root mean square errors (RMSE). QC of the predictive model performed using qualitative well correlation analysis between a well with actual DTP and DTS sonic logs and another with predicted DTP and DTS sonic logs gave very satisfactory results based on similarities in log character and trend. The results of our study show that in comparison to sonic log prediction using empirical formulas and/or petroelastic models which is fraught with limitations, machine learning can be used as a robust alternative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
makabaka发布了新的文献求助20
1秒前
JT完成签到,获得积分20
2秒前
5秒前
纪海夫发布了新的文献求助10
5秒前
搞学术的成功女人完成签到 ,获得积分10
5秒前
实验室牛马关注了科研通微信公众号
6秒前
heylay完成签到 ,获得积分10
7秒前
xiao完成签到 ,获得积分10
9秒前
景茶茶完成签到 ,获得积分10
11秒前
Milesgao完成签到,获得积分10
12秒前
赘婿应助普通的查查采纳,获得10
14秒前
小凯完成签到 ,获得积分10
15秒前
上官若男应助普外科老白采纳,获得10
15秒前
所所应助平平采纳,获得10
16秒前
英姑应助cc采纳,获得10
17秒前
Jasper应助科研苦行僧采纳,获得10
19秒前
平常的凡白完成签到 ,获得积分10
20秒前
wanci应助热情醉山采纳,获得10
21秒前
leave完成签到,获得积分10
21秒前
米花完成签到 ,获得积分10
23秒前
23秒前
平平完成签到,获得积分10
23秒前
普外科老白完成签到,获得积分10
24秒前
Chloe完成签到 ,获得积分10
24秒前
kai chen完成签到 ,获得积分0
25秒前
25秒前
李李原上草完成签到 ,获得积分10
26秒前
zzyh307完成签到 ,获得积分0
26秒前
27秒前
28秒前
Xiaoxiao应助窦慕卉采纳,获得10
28秒前
默默尔安完成签到 ,获得积分10
29秒前
科研小白完成签到,获得积分10
31秒前
平平发布了新的文献求助10
31秒前
32秒前
33秒前
芳华如梦完成签到 ,获得积分10
36秒前
tdd发布了新的文献求助50
37秒前
孙行行完成签到,获得积分10
37秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077861
关于积分的说明 9150845
捐赠科研通 2770369
什么是DOI,文献DOI怎么找? 1520305
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253