Machine Learning for Sonic Logs Prediction: A Case Study from the Niger Delta Basin in the Gulf of Guinea

均方误差 尼日尔三角洲 离群值 缺少数据 人工智能 测井 机器学习 数据预处理 计算机科学 数据挖掘 模式识别(心理学) 地质学 统计 三角洲 数学 工程类 石油工程 航空航天工程
作者
Ibrahim Tinni Tahiru,Olatunbosun Olagundoye,Abdulquadri O. Alabere
标识
DOI:10.2523/iptc-21932-ms
摘要

Abstract Sonic logs are very essential for rock type identification, hydrocarbon typing, rock physics modelling, and reservoir characterization. However, they are seldom available due to high costs of acquisition or measurement errors. Empirical formulas and petroelastic models that are often used to predict missing sonic log data may not produce accurate velocity profiles and are limited to specific geologic settings. Using sonic logs from wells in the CONDA field located in the deep offshore Niger delta basin of the Gulf of Guinea, we demonstrate that machine learning algorithms can be used to predict sonic log data if suitable quantitative relationships exists between it and available well logs. Preprocessing such as outlier removal, missing data filling and normalization was applied to the well logs before using them as training datasets for the model prior to applying several machine learning algorithms to build a predictor model for missing DTP and DTS sonic logs. The results of the training using several machine learning algorithms showed that the Gradient Boost Regressor (GBRT) Algorithm was more robust based on higher accuracy and lower root-mean-squared errors (RMSE). Validation of the prediction model at blind wells was quite good, with coefficient of determination or goodness-of-fit (R2) scores of 0.88 to 0.99 and generally low root mean square errors (RMSE). QC of the predictive model performed using qualitative well correlation analysis between a well with actual DTP and DTS sonic logs and another with predicted DTP and DTS sonic logs gave very satisfactory results based on similarities in log character and trend. The results of our study show that in comparison to sonic log prediction using empirical formulas and/or petroelastic models which is fraught with limitations, machine learning can be used as a robust alternative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晓Wu完成签到,获得积分10
2秒前
科研通AI2S应助傻傻采纳,获得10
2秒前
Heaven发布了新的文献求助10
2秒前
叮当狗完成签到,获得积分10
2秒前
2秒前
李爱国应助如风随水采纳,获得10
2秒前
零知识发布了新的文献求助10
3秒前
充电宝应助123采纳,获得10
3秒前
吱吱发布了新的文献求助10
4秒前
sun发布了新的文献求助10
5秒前
李伟峰发布了新的文献求助10
6秒前
wu8577应助舒服的寻云采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
kmo发布了新的文献求助10
6秒前
爆米花应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
如影随形完成签到 ,获得积分10
7秒前
8秒前
8秒前
Kyrie完成签到,获得积分10
8秒前
高兴白莲发布了新的文献求助10
9秒前
shinysparrow应助西米采纳,获得200
9秒前
9秒前
10秒前
帅气若风完成签到,获得积分10
10秒前
11秒前
LEMONS应助范白白采纳,获得10
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122