Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization

土壤盐分 环境科学 特征选择 计算机科学 均方误差 土壤科学 随机森林 水文学(农业) 土壤水分 数学 统计 地质学 机器学习 岩土工程
作者
Baili Chen,Hongwei Zheng,Geping Luo,Chunbo Chen,Anming Bao,Tie Liu,Xi Chen
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (3): 778-811 被引量:22
标识
DOI:10.1080/01431161.2021.2009589
摘要

Soil salinization endangers the development of ecological agriculture. As soil salinization is often heavily affected by regional environments, difficulties arise when constructing an adaptive multi-regional soil salinity estimation model. In this study, we proposed an extreme gradient boosting (XGBoost) model based on the Tree-structure Parzen Estimator (TPE) optimization algorithm to apply to four study areas with different environments (TPE-XGBoost). The four areas are the Weigan-Kuqa Oasis (Weiku), the Sangong River Basin (Sgr) and the Qitai Oasis in Xinjiang, China, and the middle and lower reaches of the Syr Darya Basin in Kazakhstan. Most previous soil salinity studies did not pay much attention to the impact of feature selection and hyper-parameter tuning on the performance of machine learning models, and the complex dependence and interaction between input features and hyper-parameters. In order to improve the performance of XGBoost model in estimating soil salinity, we proposed for the first time to use TPE algorithm to jointly optimize feature selection and hyper-parameter tuning, and verified it in four areas. Coefficient of determination (R2) and Root Mean Square Error (RMSE) were used to evaluate the model performance. First, we calculated 55 environmental features from Landsat and terrain data. Then, in order to reduce the computational complexity of the TPE-XGBoost model, we used Pearson correlation analysis between surface soil salinity content (SSC) and features to initially filter out the features that were not significantly related (P > 0.05). Finally, the TPE algorithm was used to jointly optimize the parameter space composed of features and hyper-parameters. The results showed that (1) TPE joint optimization algorithm significantly improved the performance of the XGBoost model, achieving high accuracy in the four areas, and had powerful generalization. R2 values of test sets for Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin were 0.95, 0.95, 0.80, and 0.81, respectively. (2) There is no universal feature can be applied to soil salinity inversion in different environments. TPE algorithm adaptively selected different types and numbers of features for four areas, 19, 11, 25, and 15 features were selected in Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin, respectively. This showed that the optimal model parameters should not be fixed parameters, but should be re-determined locally according to different environmental conditions. The TPE algorithm can capture the features that reflect environmental differences. (3) The XGBoost model can provide feature importance ranking, which improves the interpretability of machine learning model. The importance analysis results showed that the features had different contributions in different areas. The TPE-XGBoost model proposed in this study has great potential in multi-regional soil salt estimation research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
星辰大海应助Wqian采纳,获得10
7秒前
7秒前
11秒前
19秒前
20秒前
科目三应助朴素的松采纳,获得10
21秒前
Jodie发布了新的文献求助10
24秒前
24秒前
Heinrich完成签到,获得积分10
25秒前
Lucas应助inter采纳,获得10
29秒前
无极微光应助科研通管家采纳,获得20
32秒前
Orange应助科研通管家采纳,获得10
32秒前
Verity应助科研通管家采纳,获得10
32秒前
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
32秒前
苏新天完成签到 ,获得积分10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
Liangang应助科研通管家采纳,获得10
32秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
huanger应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
小新应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
一叶知秋应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
35秒前
跳跃的翼完成签到,获得积分10
38秒前
健忘可愁完成签到,获得积分10
39秒前
跳跃的翼发布了新的文献求助10
40秒前
41秒前
无花果应助加百莉采纳,获得10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550