Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization

土壤盐分 环境科学 特征选择 计算机科学 均方误差 土壤科学 随机森林 水文学(农业) 土壤水分 数学 统计 地质学 机器学习 岩土工程
作者
Baili Chen,Hongwei Zheng,Geping Luo,Chunbo Chen,Anming Bao,Shipeng Li,Xi Chen
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (3): 778-811 被引量:7
标识
DOI:10.1080/01431161.2021.2009589
摘要

Soil salinization endangers the development of ecological agriculture. As soil salinization is often heavily affected by regional environments, difficulties arise when constructing an adaptive multi-regional soil salinity estimation model. In this study, we proposed an extreme gradient boosting (XGBoost) model based on the Tree-structure Parzen Estimator (TPE) optimization algorithm to apply to four study areas with different environments (TPE-XGBoost). The four areas are the Weigan-Kuqa Oasis (Weiku), the Sangong River Basin (Sgr) and the Qitai Oasis in Xinjiang, China, and the middle and lower reaches of the Syr Darya Basin in Kazakhstan. Most previous soil salinity studies did not pay much attention to the impact of feature selection and hyper-parameter tuning on the performance of machine learning models, and the complex dependence and interaction between input features and hyper-parameters. In order to improve the performance of XGBoost model in estimating soil salinity, we proposed for the first time to use TPE algorithm to jointly optimize feature selection and hyper-parameter tuning, and verified it in four areas. Coefficient of determination (R2) and Root Mean Square Error (RMSE) were used to evaluate the model performance. First, we calculated 55 environmental features from Landsat and terrain data. Then, in order to reduce the computational complexity of the TPE-XGBoost model, we used Pearson correlation analysis between surface soil salinity content (SSC) and features to initially filter out the features that were not significantly related (P > 0.05). Finally, the TPE algorithm was used to jointly optimize the parameter space composed of features and hyper-parameters. The results showed that (1) TPE joint optimization algorithm significantly improved the performance of the XGBoost model, achieving high accuracy in the four areas, and had powerful generalization. R2 values of test sets for Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin were 0.95, 0.95, 0.80, and 0.81, respectively. (2) There is no universal feature can be applied to soil salinity inversion in different environments. TPE algorithm adaptively selected different types and numbers of features for four areas, 19, 11, 25, and 15 features were selected in Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin, respectively. This showed that the optimal model parameters should not be fixed parameters, but should be re-determined locally according to different environmental conditions. The TPE algorithm can capture the features that reflect environmental differences. (3) The XGBoost model can provide feature importance ranking, which improves the interpretability of machine learning model. The importance analysis results showed that the features had different contributions in different areas. The TPE-XGBoost model proposed in this study has great potential in multi-regional soil salt estimation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
LCG20010909完成签到,获得积分10
2秒前
tang完成签到,获得积分10
2秒前
隐形曼青应助卓卓采纳,获得30
3秒前
姜姜发布了新的文献求助10
3秒前
烟花应助单薄天亦采纳,获得30
4秒前
小洋发布了新的文献求助10
4秒前
tang发布了新的文献求助10
5秒前
wenying发布了新的文献求助10
6秒前
8秒前
lslfreedom完成签到,获得积分10
8秒前
9秒前
大模型应助陈述采纳,获得10
9秒前
jovi完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
11秒前
Hoo应助刘大大采纳,获得10
11秒前
hanyy完成签到,获得积分10
12秒前
彩色的云发布了新的文献求助10
12秒前
老板娘完成签到,获得积分10
12秒前
小蘑菇应助吕广德采纳,获得10
13秒前
下水道发布了新的文献求助10
14秒前
wenying完成签到,获得积分10
15秒前
15秒前
单薄天亦发布了新的文献求助30
16秒前
17秒前
17秒前
华仔应助金陵第一大美女采纳,获得10
18秒前
星星完成签到,获得积分10
18秒前
19秒前
Fgc完成签到,获得积分10
19秒前
华仔应助144采纳,获得10
19秒前
阳光的寒凡完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Advanced Issues in Partial Least Squares Structural Equation Modeling (Second Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143890
求助须知:如何正确求助?哪些是违规求助? 2795451
关于积分的说明 7815296
捐赠科研通 2451527
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419