亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization

土壤盐分 环境科学 特征选择 计算机科学 均方误差 土壤科学 随机森林 水文学(农业) 土壤水分 数学 统计 地质学 机器学习 岩土工程
作者
Baili Chen,Hongwei Zheng,Geping Luo,Chunbo Chen,Anming Bao,Tie Liu,Xi Chen
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (3): 778-811 被引量:22
标识
DOI:10.1080/01431161.2021.2009589
摘要

Soil salinization endangers the development of ecological agriculture. As soil salinization is often heavily affected by regional environments, difficulties arise when constructing an adaptive multi-regional soil salinity estimation model. In this study, we proposed an extreme gradient boosting (XGBoost) model based on the Tree-structure Parzen Estimator (TPE) optimization algorithm to apply to four study areas with different environments (TPE-XGBoost). The four areas are the Weigan-Kuqa Oasis (Weiku), the Sangong River Basin (Sgr) and the Qitai Oasis in Xinjiang, China, and the middle and lower reaches of the Syr Darya Basin in Kazakhstan. Most previous soil salinity studies did not pay much attention to the impact of feature selection and hyper-parameter tuning on the performance of machine learning models, and the complex dependence and interaction between input features and hyper-parameters. In order to improve the performance of XGBoost model in estimating soil salinity, we proposed for the first time to use TPE algorithm to jointly optimize feature selection and hyper-parameter tuning, and verified it in four areas. Coefficient of determination (R2) and Root Mean Square Error (RMSE) were used to evaluate the model performance. First, we calculated 55 environmental features from Landsat and terrain data. Then, in order to reduce the computational complexity of the TPE-XGBoost model, we used Pearson correlation analysis between surface soil salinity content (SSC) and features to initially filter out the features that were not significantly related (P > 0.05). Finally, the TPE algorithm was used to jointly optimize the parameter space composed of features and hyper-parameters. The results showed that (1) TPE joint optimization algorithm significantly improved the performance of the XGBoost model, achieving high accuracy in the four areas, and had powerful generalization. R2 values of test sets for Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin were 0.95, 0.95, 0.80, and 0.81, respectively. (2) There is no universal feature can be applied to soil salinity inversion in different environments. TPE algorithm adaptively selected different types and numbers of features for four areas, 19, 11, 25, and 15 features were selected in Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin, respectively. This showed that the optimal model parameters should not be fixed parameters, but should be re-determined locally according to different environmental conditions. The TPE algorithm can capture the features that reflect environmental differences. (3) The XGBoost model can provide feature importance ranking, which improves the interpretability of machine learning model. The importance analysis results showed that the features had different contributions in different areas. The TPE-XGBoost model proposed in this study has great potential in multi-regional soil salt estimation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的沛山完成签到,获得积分10
7秒前
王瑾言发布了新的文献求助10
10秒前
12秒前
科研通AI5应助尊敬的沛山采纳,获得10
15秒前
Orange应助ceeray23采纳,获得30
30秒前
orixero应助ceeray23采纳,获得20
36秒前
41秒前
44秒前
何仙姑发布了新的文献求助10
48秒前
53秒前
59秒前
whj完成签到 ,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
NS完成签到,获得积分10
1分钟前
情怀应助王瑾言采纳,获得10
1分钟前
NS发布了新的文献求助10
1分钟前
1分钟前
1分钟前
NS发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
科研通AI2S应助TiAmo采纳,获得10
1分钟前
水水的发布了新的文献求助20
1分钟前
2分钟前
阳佟冬卉完成签到,获得积分10
2分钟前
2分钟前
pretty完成签到 ,获得积分10
2分钟前
TiAmo发布了新的文献求助10
2分钟前
王瑾言发布了新的文献求助10
2分钟前
小冯完成签到 ,获得积分10
2分钟前
研友_ZbP41L完成签到 ,获得积分10
2分钟前
李浩发布了新的文献求助10
2分钟前
小陈爱科研完成签到,获得积分10
2分钟前
2分钟前
dax大雄完成签到 ,获得积分10
2分钟前
叫我陈老师啊完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042584
求助须知:如何正确求助?哪些是违规求助? 4273052
关于积分的说明 13322016
捐赠科研通 4085897
什么是DOI,文献DOI怎么找? 2235429
邀请新用户注册赠送积分活动 1242948
关于科研通互助平台的介绍 1170015