Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization

土壤盐分 环境科学 特征选择 计算机科学 均方误差 土壤科学 随机森林 水文学(农业) 土壤水分 数学 统计 地质学 机器学习 岩土工程
作者
Baili Chen,Hongwei Zheng,Geping Luo,Chunbo Chen,Anming Bao,Tie Liu,Xi Chen
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (3): 778-811 被引量:22
标识
DOI:10.1080/01431161.2021.2009589
摘要

Soil salinization endangers the development of ecological agriculture. As soil salinization is often heavily affected by regional environments, difficulties arise when constructing an adaptive multi-regional soil salinity estimation model. In this study, we proposed an extreme gradient boosting (XGBoost) model based on the Tree-structure Parzen Estimator (TPE) optimization algorithm to apply to four study areas with different environments (TPE-XGBoost). The four areas are the Weigan-Kuqa Oasis (Weiku), the Sangong River Basin (Sgr) and the Qitai Oasis in Xinjiang, China, and the middle and lower reaches of the Syr Darya Basin in Kazakhstan. Most previous soil salinity studies did not pay much attention to the impact of feature selection and hyper-parameter tuning on the performance of machine learning models, and the complex dependence and interaction between input features and hyper-parameters. In order to improve the performance of XGBoost model in estimating soil salinity, we proposed for the first time to use TPE algorithm to jointly optimize feature selection and hyper-parameter tuning, and verified it in four areas. Coefficient of determination (R2) and Root Mean Square Error (RMSE) were used to evaluate the model performance. First, we calculated 55 environmental features from Landsat and terrain data. Then, in order to reduce the computational complexity of the TPE-XGBoost model, we used Pearson correlation analysis between surface soil salinity content (SSC) and features to initially filter out the features that were not significantly related (P > 0.05). Finally, the TPE algorithm was used to jointly optimize the parameter space composed of features and hyper-parameters. The results showed that (1) TPE joint optimization algorithm significantly improved the performance of the XGBoost model, achieving high accuracy in the four areas, and had powerful generalization. R2 values of test sets for Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin were 0.95, 0.95, 0.80, and 0.81, respectively. (2) There is no universal feature can be applied to soil salinity inversion in different environments. TPE algorithm adaptively selected different types and numbers of features for four areas, 19, 11, 25, and 15 features were selected in Weiku Oasis, Qitai Oasis, Sgr Basin, and the Syr Basin, respectively. This showed that the optimal model parameters should not be fixed parameters, but should be re-determined locally according to different environmental conditions. The TPE algorithm can capture the features that reflect environmental differences. (3) The XGBoost model can provide feature importance ranking, which improves the interpretability of machine learning model. The importance analysis results showed that the features had different contributions in different areas. The TPE-XGBoost model proposed in this study has great potential in multi-regional soil salt estimation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助劳永杰采纳,获得10
刚刚
刚刚
EthanChan发布了新的文献求助10
1秒前
辣椒完成签到,获得积分10
1秒前
2秒前
风荏完成签到,获得积分10
2秒前
开心成威发布了新的文献求助10
3秒前
阿水完成签到 ,获得积分10
3秒前
超帅的龙猫完成签到,获得积分20
5秒前
张英俊完成签到,获得积分20
5秒前
5秒前
烦了发布了新的文献求助10
6秒前
风荏发布了新的文献求助10
6秒前
7秒前
啦啦啦4396完成签到,获得积分20
8秒前
Orange应助XHH1994采纳,获得10
10秒前
皮崇知发布了新的文献求助10
12秒前
细腻老四发布了新的文献求助10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
jinboyuan应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
勿明应助科研通管家采纳,获得30
12秒前
核桃应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
djiwisksk66应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
16秒前
阿巴完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
顺心凡灵发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助50
21秒前
JamesPei应助碧蓝皮卡丘采纳,获得10
24秒前
24秒前
xu发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824