期刊:ACS energy letters [American Chemical Society] 日期:2022-01-26卷期号:7 (2): 696-711被引量:36
标识
DOI:10.1021/acsenergylett.1c02412
摘要
The generation of electron–hole radical pair at the active layer of organic photovoltaics through symmetry-breaking charge separation (SB-CS) has a crucial role in enhancing open-circuit voltage (Voc) and thereby increasing power conversion efficiency. Since the SB-CS materials achieve intramolecular charge separation with a negligible energetic driving force and decelerated charge recombination (CR) rate, SB-CS has been subjected to extensive experimental and theoretical studies. This Focus Review assesses the fundamentals of photosynthetic reaction centers, especially the “special pair”, and discusses how covalent control over the geometric arrangement, surrounding dielectric medium, and substitutions on multichromophoric perylenediimide architecture affects the energy landscape of SB-CS and CR. We systematically summarize the kinetically favored undesirable radiative and non-radiative deactivation channels of SB-CS and CR processes on diverse chromophoric arrangements. Here, we suggest new rational design principles to fine-tune the electron-transfer dynamics at the molecular level to improve the performance of light–energy conversion devices.