DallphinAtoM: Physiologically based pharmacokinetics software predicting human PK parameters based on physicochemical properties, in vitro and animal in vivo data

基于生理学的药代动力学模型 广告 计算机科学 药物开发 生物信息学 药代动力学 药理学 药品 计算生物学 生物 生物化学 基因
作者
Sae Kyung Choi,Sehwan Han,So Jin Lee,Byunghee Lim,Soo Hyeon Bae,Seunghoon Han,Dong‐Seok Yim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:216: 106662-106662
标识
DOI:10.1016/j.cmpb.2022.106662
摘要

In silico experiments and simulations using physiologically based pharmacokinetic (PBPK) and allometric approaches have played an important role in pharmaceutical research and drug development. These methods integrate diverse data from preclinical and clinical development, and have been widely applied to in vitro-in vivo extrapolation (IVIVE) of absorption, distribution, metabolism, and excretion (ADME).To develop a user-friendly open tool predicting human PK, we assessed various references on PBPK and allometric methods published so far. They were integrated into a software system named "DallphinAtoM" (Drugs with ALLometry and PHysiology Inside-Animal to huMan), which has a user-friendly platform that can handle complex PBPK models and allometric models with a relatively small amount of essential information of the drug. The models of DallphinAtoM support the integration of data gained during the nonclinical development phase, enable translation from animal to human, and allow the prediction of concentration-time profiles with predicted PK parameters.We presented two illustrative applications using DallphinAtoM: (1) human PK simulation of an orally administered drug using PBPK method; and (2) simulation of intravenous infusion following a two-compartment model using the allometric scaling method.We conclude that this is a straightforward and transparent tool allowing fast and reliable human PK simulation based on the latest knowledge on biochemical processes and physiology and provides valuable information for decision making during the early-phase drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
山山发布了新的文献求助10
1秒前
1秒前
研友_qZ6Emn完成签到,获得积分0
2秒前
2秒前
3秒前
大方泥猴桃完成签到,获得积分10
4秒前
4秒前
7秒前
7秒前
张豪杰发布了新的文献求助10
7秒前
9秒前
or完成签到,获得积分20
9秒前
科研通AI2S应助KK采纳,获得10
11秒前
11秒前
科学家发布了新的文献求助10
12秒前
13秒前
可爱的函函应助黑夜采纳,获得10
13秒前
可爱的函函应助or采纳,获得10
14秒前
14秒前
14秒前
氨甲酰磷酸完成签到,获得积分10
15秒前
小蜜蜂发布了新的文献求助10
15秒前
16秒前
无私诗云发布了新的文献求助10
16秒前
16秒前
汉堡包应助韩书琴采纳,获得10
17秒前
17秒前
fiu~完成签到 ,获得积分10
18秒前
19秒前
jw完成签到,获得积分10
19秒前
21秒前
WQ发布了新的文献求助10
22秒前
好困完成签到,获得积分0
22秒前
小豆包科研冲刺者完成签到,获得积分10
22秒前
CipherSage应助small采纳,获得10
23秒前
无私诗云完成签到,获得积分10
23秒前
wq1020发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012