DallphinAtoM: Physiologically based pharmacokinetics software predicting human PK parameters based on physicochemical properties, in vitro and animal in vivo data

基于生理学的药代动力学模型 广告 计算机科学 药物开发 生物信息学 药代动力学 药理学 药品 计算生物学 生物 生物化学 基因
作者
Suein Choi,Sungpil Han,So Jin Lee,Byunghee Lim,Soo Hyeon Bae,Seunghoon Han,Dong‐Seok Yim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:216: 106662-106662
标识
DOI:10.1016/j.cmpb.2022.106662
摘要

In silico experiments and simulations using physiologically based pharmacokinetic (PBPK) and allometric approaches have played an important role in pharmaceutical research and drug development. These methods integrate diverse data from preclinical and clinical development, and have been widely applied to in vitro-in vivo extrapolation (IVIVE) of absorption, distribution, metabolism, and excretion (ADME).To develop a user-friendly open tool predicting human PK, we assessed various references on PBPK and allometric methods published so far. They were integrated into a software system named "DallphinAtoM" (Drugs with ALLometry and PHysiology Inside-Animal to huMan), which has a user-friendly platform that can handle complex PBPK models and allometric models with a relatively small amount of essential information of the drug. The models of DallphinAtoM support the integration of data gained during the nonclinical development phase, enable translation from animal to human, and allow the prediction of concentration-time profiles with predicted PK parameters.We presented two illustrative applications using DallphinAtoM: (1) human PK simulation of an orally administered drug using PBPK method; and (2) simulation of intravenous infusion following a two-compartment model using the allometric scaling method.We conclude that this is a straightforward and transparent tool allowing fast and reliable human PK simulation based on the latest knowledge on biochemical processes and physiology and provides valuable information for decision making during the early-phase drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋天里的水完成签到,获得积分10
1秒前
wxy完成签到,获得积分10
2秒前
3秒前
香蕉觅云应助儒雅南风采纳,获得10
5秒前
郭小宝发布了新的文献求助10
9秒前
情怀应助幸福大白采纳,获得10
9秒前
齐天大圣应助幸福大白采纳,获得30
10秒前
孙燕应助幸福大白采纳,获得30
10秒前
英姑应助幸福大白采纳,获得30
10秒前
10秒前
Hashub完成签到,获得积分20
10秒前
12秒前
xueyu发布了新的文献求助10
14秒前
wonder123发布了新的文献求助10
15秒前
科研通AI2S应助张雯思采纳,获得10
16秒前
16秒前
小二郎应助张雯思采纳,获得10
16秒前
情怀应助张雯思采纳,获得10
16秒前
16秒前
科研通AI2S应助张雯思采纳,获得10
16秒前
今后应助张雯思采纳,获得10
16秒前
在水一方应助张雯思采纳,获得10
16秒前
Jasper应助张雯思采纳,获得10
16秒前
41应助张雯思采纳,获得10
16秒前
16秒前
新xin完成签到,获得积分10
17秒前
儒雅南风发布了新的文献求助10
17秒前
xxddw发布了新的文献求助10
17秒前
33发布了新的文献求助30
17秒前
18秒前
18秒前
Rondab应助科研小白采纳,获得10
19秒前
20秒前
wonder123完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
幸福的乾发布了新的文献求助10
22秒前
xyj6486发布了新的文献求助10
22秒前
23秒前
小晓发布了新的文献求助10
25秒前
Owen应助伏坎采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174