Crystal Growth Promotion and Defects Healing Enable Minimum Open‐Circuit Voltage Deficit in Antimony Selenide Solar Cells

材料科学 开路电压 光伏系统 光伏 硒化物 光电子学 能量转换效率 碲化镉光电 纳米技术 工程物理 电压 电气工程 工程类 冶金
作者
Guangxing Liang,Mingdong Chen,Muhammad Ishaq,Xinru Li,Rong Tang,Zhuanghao Zheng,Zhenghua Su,Ping Fan,Xianghua Zhang,Shuo Chen
出处
期刊:Advanced Science [Wiley]
卷期号:9 (9) 被引量:107
标识
DOI:10.1002/advs.202105142
摘要

Antimony selenide (Sb2 Se3 ) is an ideal photovoltaic candidate profiting from its advantageous material characteristics and superior optoelectronic properties, and has gained considerable development in recent years. However, the further device efficiency breakthrough is largely plagued by severe open-circuit voltage (VOC ) deficit under the existence of multiple defect states and detrimental recombination loss. In this work, an effective absorber layer growth engineering involved with vapor transport deposition and post-selenization is developed to grow Sb2 Se3 thin films. High-quality Sb2 Se3 with large compact crystal grains, benign [hk1] growth orientation, stoichiometric chemical composition, and suitable direct bandgap are successfully fulfilled under an optimized post-selenization scenario. Planar Sb2 Se3 thin-film solar cells with substrate configuration of Mo/Sb2 Se3 /CdS/ITO/Ag are constructed. By contrast, such engineering effort can remarkably mitigate the device VOC deficit, owing to the healed detrimental defects, the suppressed interface and space-charge region recombination, the prolonged carrier lifetime, and the enhanced charge transport. Accordingly, a minimum VOC deficit of 0.647 V contributes to a record VOC of 0.513 V, a champion device with highly interesting efficiency of 7.40% is also comparable to those state-of-the-art Sb2 Se3 solar cells, paving a bright avenue to broaden its scope of photovoltaic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫三完成签到,获得积分20
1秒前
llll完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
传奇3应助橙花采纳,获得10
3秒前
小文章完成签到,获得积分10
5秒前
Gilbert发布了新的文献求助10
5秒前
colddie完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
可口可乐发布了新的文献求助10
6秒前
谨慎幻丝应助科研通管家采纳,获得150
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
CHENHL应助科研通管家采纳,获得20
6秒前
Akim应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
笔记本应助科研通管家采纳,获得20
7秒前
英姑应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
gj2221423应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
远古遗迹完成签到,获得积分10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
7秒前
ArkZ完成签到 ,获得积分10
8秒前
8秒前
腼腆的赛君完成签到,获得积分10
8秒前
llll发布了新的文献求助10
8秒前
小文章发布了新的文献求助10
9秒前
9秒前
糊涂的元蝶完成签到,获得积分10
9秒前
桔梗发布了新的文献求助10
12秒前
啊就是地方就啊都是完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011