Random-Forest-Algorithm-Based Applications of the Basic Characteristics and Serum and Imaging Biomarkers to Diagnose Mild Cognitive Impairment

磁共振弥散成像 医学 认知障碍 部分各向异性 随机森林 脑血流 糖尿病 算法 痴呆 冠状动脉疾病 疾病 内科学 磁共振成像 人工智能 数学 放射科 计算机科学 内分泌学
作者
Juan Yang,Haijing Sui,Ronghong Jiao,Min Zhang,Xiaohui Zhao,Lingling Wang,Wenping Deng,Xueyuan Liu
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:19 (1): 76-83
标识
DOI:10.2174/1567205019666220128120927
摘要

Mild cognitive impairment (MCI) is considered the early stage of Alzheimer's Disease (AD). The purpose of our study was to analyze the basic characteristics and serum and imaging biomarkers for the diagnosis of MCI patients as a more objective and accurate approach.The Montreal Cognitive Test was used to test 119 patients aged ≥65. Such serum biomarkers were detected as preprandial blood glucose, triglyceride, total cholesterol, Aβ1-40, Aβ1-42, and P-tau. All the subjects were scanned with 1.5T MRI (GE Healthcare, WI, USA) to obtain DWI, DTI, and ASL images. DTI was used to calculate the anisotropy fraction (FA), DWI was used to calculate the apparent diffusion coefficient (ADC), and ASL was used to calculate the cerebral blood flow (CBF). All the images were then registered to the SPACE of the Montreal Neurological Institute (MNI). In 116 brain regions, the medians of FA, ADC, and CBF were extracted by automatic anatomical labeling. The basic characteristics included gender, education level, and previous disease history of hypertension, diabetes, and coronary heart disease. The data were randomly divided into training sets and test ones. The recursive random forest algorithm was applied to the diagnosis of MCI patients, and the recursive feature elimination (RFE) method was used to screen the significant basic features and serum and imaging biomarkers. The overall accuracy, sensitivity, and specificity were calculated, respectively, and so were the ROC curve and the area under the curve (AUC) of the test set.When the variable of the MCI diagnostic model was an imaging biomarker, the training accuracy of the random forest was 100%, the correct rate of the test was 86.23%, the sensitivity was 78.26%, and the specificity was 100%. When combining the basic characteristics, the serum and imaging biomarkers as variables of the MCI diagnostic model, the training accuracy of the random forest was found to be 100%; the test accuracy was 97.23%, the sensitivity was 94.44%, and the specificity was 100%. RFE analysis showed that age, Aβ1-40, and cerebellum_4_6 were the most important basic feature, serum biomarker, imaging biomarker, respectively.Imaging biomarkers can effectively diagnose MCI. The diagnostic capacity of the basic trait biomarkers or serum biomarkers for MCI is limited, but their combination with imaging biomarkers can improve the diagnostic capacity, as indicated by the sensitivity of 94.44% and the specificity of 100% in our model. As a machine learning method, a random forest can help diagnose MCI effectively while screening important influencing factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个西藏发布了新的文献求助10
刚刚
浪沧一刀完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
3秒前
CLX。完成签到,获得积分10
3秒前
4秒前
4秒前
求助人员发布了新的文献求助10
5秒前
7秒前
北鸢完成签到,获得积分10
7秒前
烂漫的凡波完成签到,获得积分10
7秒前
7秒前
hui发布了新的文献求助10
9秒前
小蜗牛完成签到,获得积分10
9秒前
番茄鱼完成签到 ,获得积分10
9秒前
qqq完成签到 ,获得积分10
9秒前
gooofy发布了新的文献求助50
10秒前
11秒前
11秒前
12秒前
j7完成签到 ,获得积分10
12秒前
12秒前
LaTeXer应助qinqinwy采纳,获得10
13秒前
14秒前
yznfly应助wang采纳,获得180
14秒前
believe完成签到,获得积分20
15秒前
qiuqi发布了新的文献求助10
15秒前
QLLW完成签到,获得积分10
16秒前
王cc发布了新的文献求助10
16秒前
jiuwu完成签到,获得积分10
17秒前
星辰大海应助Lu采纳,获得10
17秒前
沉静的煎蛋完成签到,获得积分10
18秒前
20秒前
20秒前
FashionBoy应助活泼醉冬采纳,获得10
21秒前
NexusExplorer应助hui采纳,获得10
21秒前
陈杰完成签到,获得积分10
23秒前
昭明完成签到 ,获得积分10
23秒前
璃光浮月发布了新的文献求助10
24秒前
24秒前
AquaR发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851