Random-Forest-Algorithm-Based Applications of the Basic Characteristics and Serum and Imaging Biomarkers to Diagnose Mild Cognitive Impairment

磁共振弥散成像 医学 认知障碍 部分各向异性 随机森林 脑血流 糖尿病 算法 痴呆 冠状动脉疾病 疾病 内科学 磁共振成像 人工智能 数学 放射科 计算机科学 内分泌学
作者
Juan Yang,Haijing Sui,Ronghong Jiao,Min Zhang,Xiaohui Zhao,Lingling Wang,Wenping Deng,Xueyuan Liu
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:19 (1): 76-83
标识
DOI:10.2174/1567205019666220128120927
摘要

Mild cognitive impairment (MCI) is considered the early stage of Alzheimer's Disease (AD). The purpose of our study was to analyze the basic characteristics and serum and imaging biomarkers for the diagnosis of MCI patients as a more objective and accurate approach.The Montreal Cognitive Test was used to test 119 patients aged ≥65. Such serum biomarkers were detected as preprandial blood glucose, triglyceride, total cholesterol, Aβ1-40, Aβ1-42, and P-tau. All the subjects were scanned with 1.5T MRI (GE Healthcare, WI, USA) to obtain DWI, DTI, and ASL images. DTI was used to calculate the anisotropy fraction (FA), DWI was used to calculate the apparent diffusion coefficient (ADC), and ASL was used to calculate the cerebral blood flow (CBF). All the images were then registered to the SPACE of the Montreal Neurological Institute (MNI). In 116 brain regions, the medians of FA, ADC, and CBF were extracted by automatic anatomical labeling. The basic characteristics included gender, education level, and previous disease history of hypertension, diabetes, and coronary heart disease. The data were randomly divided into training sets and test ones. The recursive random forest algorithm was applied to the diagnosis of MCI patients, and the recursive feature elimination (RFE) method was used to screen the significant basic features and serum and imaging biomarkers. The overall accuracy, sensitivity, and specificity were calculated, respectively, and so were the ROC curve and the area under the curve (AUC) of the test set.When the variable of the MCI diagnostic model was an imaging biomarker, the training accuracy of the random forest was 100%, the correct rate of the test was 86.23%, the sensitivity was 78.26%, and the specificity was 100%. When combining the basic characteristics, the serum and imaging biomarkers as variables of the MCI diagnostic model, the training accuracy of the random forest was found to be 100%; the test accuracy was 97.23%, the sensitivity was 94.44%, and the specificity was 100%. RFE analysis showed that age, Aβ1-40, and cerebellum_4_6 were the most important basic feature, serum biomarker, imaging biomarker, respectively.Imaging biomarkers can effectively diagnose MCI. The diagnostic capacity of the basic trait biomarkers or serum biomarkers for MCI is limited, but their combination with imaging biomarkers can improve the diagnostic capacity, as indicated by the sensitivity of 94.44% and the specificity of 100% in our model. As a machine learning method, a random forest can help diagnose MCI effectively while screening important influencing factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
野猪亨利28完成签到,获得积分10
2秒前
2秒前
陈最完成签到,获得积分10
2秒前
充电宝应助祁郁郁采纳,获得10
2秒前
英俊的铭应助刘星星采纳,获得10
4秒前
4秒前
访云发布了新的文献求助10
7秒前
12345完成签到,获得积分10
7秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得50
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
婷宝应助科研通管家采纳,获得20
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助背后幻姬采纳,获得10
9秒前
辛勤夜柳发布了新的文献求助10
10秒前
行者完成签到,获得积分10
11秒前
11秒前
cccc发布了新的文献求助50
11秒前
酷波er应助爱听歌的紫菜采纳,获得10
11秒前
ddly完成签到 ,获得积分10
11秒前
微笑笑天完成签到 ,获得积分20
12秒前
谨慎樱关注了科研通微信公众号
12秒前
shisui应助Kenny采纳,获得30
13秒前
体贴玉兰发布了新的文献求助10
13秒前
xiaoyudan关注了科研通微信公众号
13秒前
13秒前
今后应助kk摆烂采纳,获得10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608