Scale-free dynamics of microstate sequence in negative schizophrenia and depressive disorder

地方政府 赫斯特指数 精神分裂症(面向对象编程) 静息状态功能磁共振成像 心理学 脑电图 神经科学 精神科 数学 统计
作者
Zikang Niu,Lina Jia,Yi Liu,Qian Wang,Yang Li,Lijuan Yang,Xiaoli Li,Xue Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105287-105287 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.105287
摘要

Negative schizophrenia (NSZ) and depressive disorder (DE) have many clinical similarities (e.g., lack of energy, social withdrawal). The purpose of this study was to explore microstate (MS) and scale-free dynamics of microstate sequence (SFML) in NSZ patients, DE patients and healthy controls (HC).The subjects included 30 NSZ patients, 32 DE patients and 34 age-matched healthy controls. A resting-state electroencephalogram (rsEEG) was recorded under two conditions: (1) resting state with eyes opened (EO) and (2) resting state with eyes closed (EC). First, rsEEG signals were filtered into 1-45 Hz. Then, MS analysis was performed using the Microstate EEGLAB toolbox. Finally, the SFML feature of the sequence, which was transformed from the MS label sequence, was extracted by the Hurst exponent (HE).The rsEEG data of all subjects were clustered into six topographies. We could conclude that DE and NSZ patients show similar abnormalities in EO state. However, in the EC state, MS A, and B values were unique to NSZ patients, while DE patients had different values for MS C D and F. We also found a large correlation between these features and clinical information. In SFML, the Hurst exponent of the EO state might be more useful in assessing the characteristics of NSZ, while that of EC state can be used to understand these disorders with different random walk classifications.The methods are associated with the ability to dynamically change of brain and information processing system. The MS and SFML of the EO state can be used to reflect the similar abnormalities of NSZ and DE patients. We recommend the EC state as the appropriate state to study the difference between the disorders. By combing the two states and these method, we can learn and study more similarities and differences between NSZ and DE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YE完成签到 ,获得积分20
2秒前
李繁蕊发布了新的文献求助10
2秒前
2秒前
2秒前
可可完成签到,获得积分10
2秒前
3秒前
自由寻菱发布了新的文献求助20
4秒前
俏皮元珊发布了新的文献求助10
4秒前
Owen应助YY采纳,获得10
4秒前
优秀的逊发布了新的文献求助10
4秒前
wzm完成签到,获得积分10
5秒前
一年发3篇JACS完成签到,获得积分10
5秒前
5秒前
SciGPT应助木子采纳,获得10
6秒前
66完成签到,获得积分10
6秒前
赵鹏翔发布了新的文献求助10
6秒前
带象完成签到,获得积分10
6秒前
才露尖尖角完成签到,获得积分10
7秒前
幽默服饰完成签到 ,获得积分10
7秒前
芝士就是力量完成签到,获得积分10
7秒前
xr完成签到 ,获得积分10
7秒前
YaoX发布了新的文献求助10
8秒前
打打应助核桃采纳,获得10
8秒前
Porifera完成签到,获得积分10
8秒前
8秒前
笋蒸鱼发布了新的文献求助10
8秒前
余云开发布了新的文献求助50
9秒前
顾矜应助板凳采纳,获得10
9秒前
带象发布了新的文献求助20
10秒前
11秒前
11秒前
阿曼尼完成签到 ,获得积分10
11秒前
英俊的铭应助LILING采纳,获得10
11秒前
iRan完成签到,获得积分10
12秒前
落忆完成签到 ,获得积分10
12秒前
蜡笔完成签到,获得积分10
12秒前
趁微风不躁完成签到,获得积分10
12秒前
通~发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740