Generative machine learning algorithm for lattice structures with superior mechanical properties

格子(音乐) 材料科学 计算机科学 人工神经网络 梁(结构) 算法 模拟退火 结构工程 机械工程 人工智能 声学 工程类 物理
作者
Sangryun Lee,Zhizhou Zhang,Grace X. Gu
出处
期刊:Materials horizons [The Royal Society of Chemistry]
卷期号:9 (3): 952-960 被引量:43
标识
DOI:10.1039/d1mh01792f
摘要

Lattice structures are typically made up of a crisscross pattern of beam elements, allowing engineers to distribute material in a more structurally effective way. However, a main challenge in the design of lattice structures is a trade-off between the density and mechanical properties. Current studies have often assumed the cross-sectional area of the beam elements to be uniform for reducing the design complexity. This simplified approach limits the possibility of finding superior designs with optimized weight-to-performance ratios. Here, the optimized shape of the beam elements is investigated using a deep learning approach with high-order Bézier curves to explore the augmented design space. This is then combined with a hybrid neural network and genetic optimization (NN-GO) adaptive method for the generation of superior lattice structures. In our optimized design, the distribution of material is smartly shifted more towards the joint region, the weakest location of lattice structures, to achieve the highest modulus and strength. This design strikes to balance between two modes of deformation: axial and bending. Thus, the optimized design is efficient for load bearing and energy absorption. To validate our simulations, the optimized design is then fabricated by additive manufacturing and its mechanical properties are evaluated through compression testing. A good correlation between experiments and simulations is observed and the optimized design has outperformed benchmark ones in terms of modulus and strength. We show that the extra design flexibility from high-order Bézier curves allows for a smoother transition between the beam elements which reduces the overall stress concentration profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助淡淡冬瓜采纳,获得10
刚刚
星辰大海应助uriah采纳,获得10
刚刚
1秒前
zhyccc发布了新的文献求助10
3秒前
keyantongxdl完成签到,获得积分10
3秒前
打打应助小居采纳,获得10
3秒前
dbzdq发布了新的文献求助10
5秒前
5秒前
Wang发布了新的文献求助10
6秒前
张杰完成签到,获得积分20
8秒前
paperHDT发布了新的文献求助10
9秒前
9秒前
Someone应助66采纳,获得10
11秒前
夏侯乐枫发布了新的文献求助10
13秒前
小二郎应助秋中雨采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
njufeng完成签到,获得积分10
15秒前
16秒前
xhtt完成签到,获得积分10
17秒前
17秒前
17秒前
思源应助研友_nV21Vn采纳,获得10
17秒前
汉堡包应助柳寄柔采纳,获得10
17秒前
18秒前
18秒前
图南发布了新的文献求助30
18秒前
meier1206关注了科研通微信公众号
18秒前
coo完成签到,获得积分10
18秒前
张张发布了新的文献求助10
19秒前
张杰发布了新的文献求助10
21秒前
CL发布了新的文献求助10
22秒前
22秒前
无情耷完成签到 ,获得积分10
24秒前
Tracy麦子发布了新的文献求助10
24秒前
任性的鼠标完成签到,获得积分20
24秒前
从容芮应助张张采纳,获得10
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821