亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities

计算机科学 系列(地层学) 能量(信号处理) 数学 地质学 统计 古生物学
作者
Holger Teichgraeber,Adam R. Brandt
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:157: 111984-111984 被引量:75
标识
DOI:10.1016/j.rser.2021.111984
摘要

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect optimization models, and define the goals, inherent assumptions, and challenges of time-series aggregation. We review the methods that have been proposed in the literature, focusing on how these methods address the challenges. This leads to suggestions for future research opportunities. This review is both an introduction for researchers using time-series aggregation for the first time and a guide to “connect the dots” for experienced researchers in the field. We recommend the following best practices when using time-series aggregation: (1) Performance should be measured in terms of optimization outcome and should be validated on the full time series; (2) aggregation methods and optimization problem formulation should be tuned for the specific problem and data; (3) wind data should be aggregated with extra care; (4) bounding the error in the objective function should be considered; (5) inclusion of real “extreme days” in addition to aggregated days can often greatly improve performance. • Review and discussion of time series aggregation methods. • Energy systems optimization compute time can be reduced by 1–3 orders of magnitude. • Identification of best practices and outline of future research opportunities. • Synthesis of the literature based on challenges common to all applications. • Integration of many applications for which methods have been developed individually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助爱听歌笑寒采纳,获得10
16秒前
20秒前
25秒前
无花果应助科研通管家采纳,获得10
26秒前
27秒前
Galri完成签到 ,获得积分10
31秒前
lwp发布了新的文献求助10
34秒前
35秒前
李密完成签到 ,获得积分10
39秒前
fev123完成签到,获得积分0
39秒前
49秒前
1分钟前
1分钟前
1分钟前
深情安青应助zhangfan采纳,获得10
1分钟前
白柏发布了新的文献求助10
1分钟前
情怀应助Hazel采纳,获得10
1分钟前
丘比特应助白柏采纳,获得10
1分钟前
1分钟前
zhangfan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
传奇3应助呆萌的机器猫采纳,获得10
1分钟前
充电宝应助呆萌的机器猫采纳,获得10
1分钟前
浮游应助呆萌的机器猫采纳,获得10
1分钟前
科目三应助呆萌的机器猫采纳,获得10
1分钟前
小马甲应助呆萌的机器猫采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
白柏发布了新的文献求助10
1分钟前
小蘑菇应助白柏采纳,获得10
2分钟前
2分钟前
2分钟前
Hazel发布了新的文献求助10
2分钟前
2分钟前
白柏发布了新的文献求助10
2分钟前
Alusia完成签到 ,获得积分10
2分钟前
深情安青应助爱听歌笑寒采纳,获得10
2分钟前
顾矜应助Hazel采纳,获得30
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595498
求助须知:如何正确求助?哪些是违规求助? 4007830
关于积分的说明 12408608
捐赠科研通 3686484
什么是DOI,文献DOI怎么找? 2031898
邀请新用户注册赠送积分活动 1065130
科研通“疑难数据库(出版商)”最低求助积分说明 950489