Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities

计算机科学 系列(地层学) 能量(信号处理) 数学 地质学 统计 古生物学
作者
Holger Teichgraeber,Adam R. Brandt
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:157: 111984-111984 被引量:75
标识
DOI:10.1016/j.rser.2021.111984
摘要

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect optimization models, and define the goals, inherent assumptions, and challenges of time-series aggregation. We review the methods that have been proposed in the literature, focusing on how these methods address the challenges. This leads to suggestions for future research opportunities. This review is both an introduction for researchers using time-series aggregation for the first time and a guide to “connect the dots” for experienced researchers in the field. We recommend the following best practices when using time-series aggregation: (1) Performance should be measured in terms of optimization outcome and should be validated on the full time series; (2) aggregation methods and optimization problem formulation should be tuned for the specific problem and data; (3) wind data should be aggregated with extra care; (4) bounding the error in the objective function should be considered; (5) inclusion of real “extreme days” in addition to aggregated days can often greatly improve performance. • Review and discussion of time series aggregation methods. • Energy systems optimization compute time can be reduced by 1–3 orders of magnitude. • Identification of best practices and outline of future research opportunities. • Synthesis of the literature based on challenges common to all applications. • Integration of many applications for which methods have been developed individually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanlan完成签到,获得积分10
1秒前
简奥斯汀完成签到 ,获得积分10
1秒前
WANG完成签到,获得积分10
1秒前
1秒前
sdfwsdfsd完成签到,获得积分10
3秒前
YINLANRUI完成签到,获得积分10
4秒前
lanlan发布了新的文献求助10
5秒前
YINLANRUI发布了新的文献求助10
6秒前
高大绝义完成签到,获得积分10
7秒前
lixinyue完成签到 ,获得积分10
10秒前
112完成签到 ,获得积分10
11秒前
东风完成签到,获得积分10
11秒前
世间安得双全法完成签到,获得积分0
11秒前
FJ完成签到 ,获得积分10
12秒前
张一完成签到,获得积分10
12秒前
Kamal完成签到,获得积分10
16秒前
无味完成签到,获得积分10
17秒前
Lucas完成签到,获得积分10
18秒前
19秒前
20秒前
sscss完成签到,获得积分10
20秒前
bwbw完成签到 ,获得积分10
20秒前
gengfu完成签到,获得积分10
21秒前
梅竹完成签到,获得积分10
24秒前
倪小呆完成签到 ,获得积分10
24秒前
大大蕾完成签到 ,获得积分0
25秒前
jy发布了新的文献求助10
26秒前
小左完成签到 ,获得积分10
28秒前
旺仔完成签到,获得积分10
28秒前
周末万岁完成签到,获得积分10
29秒前
30秒前
一颗小洋葱完成签到 ,获得积分10
30秒前
ANESTHESIA_XY完成签到 ,获得积分10
30秒前
zjzjzjzjzj完成签到 ,获得积分10
31秒前
缓慢白曼完成签到 ,获得积分10
31秒前
tigger完成签到 ,获得积分10
32秒前
谨慎鹏涛完成签到 ,获得积分10
32秒前
安静的思卉完成签到 ,获得积分10
33秒前
无私小小完成签到,获得积分10
33秒前
livra1058完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539146
求助须知:如何正确求助?哪些是违规求助? 3116747
关于积分的说明 9326679
捐赠科研通 2814672
什么是DOI,文献DOI怎么找? 1547028
邀请新用户注册赠送积分活动 720734
科研通“疑难数据库(出版商)”最低求助积分说明 712201