Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities

计算机科学 系列(地层学) 能量(信号处理) 数学 地质学 统计 古生物学
作者
Holger Teichgraeber,Adam R. Brandt
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:157: 111984-111984 被引量:75
标识
DOI:10.1016/j.rser.2021.111984
摘要

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect optimization models, and define the goals, inherent assumptions, and challenges of time-series aggregation. We review the methods that have been proposed in the literature, focusing on how these methods address the challenges. This leads to suggestions for future research opportunities. This review is both an introduction for researchers using time-series aggregation for the first time and a guide to “connect the dots” for experienced researchers in the field. We recommend the following best practices when using time-series aggregation: (1) Performance should be measured in terms of optimization outcome and should be validated on the full time series; (2) aggregation methods and optimization problem formulation should be tuned for the specific problem and data; (3) wind data should be aggregated with extra care; (4) bounding the error in the objective function should be considered; (5) inclusion of real “extreme days” in addition to aggregated days can often greatly improve performance. • Review and discussion of time series aggregation methods. • Energy systems optimization compute time can be reduced by 1–3 orders of magnitude. • Identification of best practices and outline of future research opportunities. • Synthesis of the literature based on challenges common to all applications. • Integration of many applications for which methods have been developed individually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷炫的安雁完成签到 ,获得积分10
1秒前
2秒前
LAN0528完成签到,获得积分10
3秒前
笃定发布了新的文献求助10
3秒前
zcl应助温暖的雨旋采纳,获得100
4秒前
6692067发布了新的文献求助10
4秒前
5秒前
木木完成签到,获得积分20
5秒前
叁壹粑粑发布了新的文献求助30
6秒前
学术蛔虫完成签到 ,获得积分10
7秒前
Olsters完成签到,获得积分10
8秒前
123321完成签到,获得积分10
8秒前
8秒前
笃定完成签到,获得积分10
10秒前
桐桐应助XTQ采纳,获得10
10秒前
6692067完成签到,获得积分10
11秒前
大王叫我来巡山完成签到,获得积分10
12秒前
12秒前
13秒前
平常紫安完成签到 ,获得积分10
14秒前
mr_beard完成签到 ,获得积分10
16秒前
16秒前
李白发布了新的文献求助10
17秒前
一一完成签到,获得积分10
18秒前
科研通AI6应助Julie采纳,获得30
19秒前
19秒前
qrwyqjbsd应助洗刷刷采纳,获得10
19秒前
20秒前
amanda应助wgw采纳,获得20
21秒前
22秒前
NEXUS1604举报正宗求助涉嫌违规
23秒前
现代的擎苍完成签到,获得积分10
23秒前
24秒前
lijunlhc完成签到,获得积分10
24秒前
只昂张关注了科研通微信公众号
24秒前
爆炸boom完成签到 ,获得积分10
25秒前
研究生end发布了新的文献求助20
25秒前
华仔完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429