Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities

计算机科学 系列(地层学) 能量(信号处理) 数学 地质学 统计 古生物学
作者
Holger Teichgraeber,Adam R. Brandt
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:157: 111984-111984 被引量:75
标识
DOI:10.1016/j.rser.2021.111984
摘要

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect optimization models, and define the goals, inherent assumptions, and challenges of time-series aggregation. We review the methods that have been proposed in the literature, focusing on how these methods address the challenges. This leads to suggestions for future research opportunities. This review is both an introduction for researchers using time-series aggregation for the first time and a guide to “connect the dots” for experienced researchers in the field. We recommend the following best practices when using time-series aggregation: (1) Performance should be measured in terms of optimization outcome and should be validated on the full time series; (2) aggregation methods and optimization problem formulation should be tuned for the specific problem and data; (3) wind data should be aggregated with extra care; (4) bounding the error in the objective function should be considered; (5) inclusion of real “extreme days” in addition to aggregated days can often greatly improve performance. • Review and discussion of time series aggregation methods. • Energy systems optimization compute time can be reduced by 1–3 orders of magnitude. • Identification of best practices and outline of future research opportunities. • Synthesis of the literature based on challenges common to all applications. • Integration of many applications for which methods have been developed individually.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
无花果应助langping采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
喵喵喵发布了新的文献求助10
1秒前
Hanoi347应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小透明应助科研通管家采纳,获得30
1秒前
长孙巧凡完成签到,获得积分0
1秒前
情怀应助科研通管家采纳,获得10
1秒前
嬴政飞发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
孙佳美发布了新的文献求助10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
深情安青应助YuGe采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
侯总应助GUOGUO采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582277
求助须知:如何正确求助?哪些是违规求助? 4666402
关于积分的说明 14762415
捐赠科研通 4608389
什么是DOI,文献DOI怎么找? 2528643
邀请新用户注册赠送积分活动 1498029
关于科研通互助平台的介绍 1466671