Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association

基因 生物 免疫疗法 计算生物学 黑色素瘤 癌症 卡波扎尼布 癌症研究 遗传学
作者
Chia Chin Wu,Y. Alan Wang,J. Andrew Livingston,Jianhua Zhang,Andrew Futreal
出处
期刊:Nature Communications [Springer Nature]
卷期号:13 (1) 被引量:22
标识
DOI:10.1038/s41467-021-27651-4
摘要

Abstract Owing to a lack of response to the anti-PD1 therapy for most cancer patients, we develop a network approach to infer genes, pathways, and potential therapeutic combinations that are associated with tumor response to anti-PD1. Here, our prediction identifies genes and pathways known to be associated with anti-PD1, and is further validated by 6 CRISPR gene sets associated with tumor resistance to cytotoxic T cells and targets of the 36 compounds that have been tested in clinical trials for combination treatments with anti-PD1. Integration of our top prediction and TCGA data identifies hundreds of genes whose expression and genetic alterations that could affect response to anti-PD1 in each TCGA cancer type, and the comparison of these genes across cancer types reveals that the tumor immunoregulation associated with response to anti-PD1 would be tissue-specific. In addition, the integration identifies the gene signature to calculate the MHC I association immunoscore (MIAS) that shows a good correlation with patient response to anti-PD1 for 411 melanoma samples complied from 6 cohorts. Furthermore, mapping drug target data to the top genes in our association prediction identifies inhibitors that could potentially enhance tumor response to anti-PD1, such as inhibitors of the encoded proteins of CDK4 , GSK3B , and PTK2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GGBoy完成签到,获得积分10
3秒前
善学以致用应助是小曹啊采纳,获得10
3秒前
万能图书馆应助洗剪吹采纳,获得10
5秒前
路弈完成签到,获得积分10
6秒前
Wy发布了新的文献求助10
7秒前
ashley完成签到,获得积分10
10秒前
Billy应助justin采纳,获得20
12秒前
TillySss发布了新的文献求助10
13秒前
20秒前
21秒前
Wenhao Zhao发布了新的文献求助10
24秒前
嘿嘿哈发布了新的文献求助10
25秒前
77发布了新的文献求助10
26秒前
zzz关闭了zzz文献求助
27秒前
科研通AI2S应助老温采纳,获得10
30秒前
33秒前
CodeCraft应助执着傲柏采纳,获得10
35秒前
YiWeiYing发布了新的文献求助10
35秒前
慕青应助嘿嘿哈采纳,获得30
36秒前
37秒前
QI发布了新的文献求助10
38秒前
41秒前
李健的小迷弟应助QI采纳,获得10
41秒前
huhu发布了新的文献求助10
43秒前
MW发布了新的文献求助10
44秒前
果味桃发布了新的文献求助10
45秒前
liuzelin完成签到,获得积分10
47秒前
小蘑菇应助仁爱水卉采纳,获得10
47秒前
芋圆完成签到,获得积分10
51秒前
53秒前
吴壮完成签到,获得积分10
53秒前
万物安生完成签到,获得积分10
53秒前
54秒前
鲤鱼萧完成签到,获得积分10
54秒前
55秒前
liuzelin发布了新的文献求助10
55秒前
手机应助YiWeiYing采纳,获得10
57秒前
kksk完成签到,获得积分10
58秒前
叶子宁完成签到,获得积分10
58秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267870
求助须知:如何正确求助?哪些是违规求助? 2907272
关于积分的说明 8341428
捐赠科研通 2577932
什么是DOI,文献DOI怎么找? 1401356
科研通“疑难数据库(出版商)”最低求助积分说明 655029
邀请新用户注册赠送积分活动 634046