电容去离子
石墨烯
材料科学
电极
锂(药物)
化学工程
氧化物
尖晶石
电化学
锰
筛子(范畴论)
无机化学
纳米技术
化学
冶金
物理化学
内分泌学
工程类
组合数学
医学
数学
作者
Bin Hu,Xiaohong Shang,Pengfei Nie,Boshuang Zhang,Jianmao Yang,Jianyun Liu
标识
DOI:10.1016/j.jcis.2021.12.181
摘要
Faced with the strong demand of clean energy, development of lithium source is becoming exceedingly vital. Spinel-type manganese oxide (λ-MnO2) is a typical lithium ion sieve material. Herein, the conductive three-dimensional (3D) lithium ion sieve electrode material was fabricated by in-situ growth of λ-MnO2 on 3D reduced graphene oxide (3D-rGO) matrix for Li extraction by capacitive deionization (CDI). The λ-MnO2 modified rGO (λ-MnO2/rGO) retained the 3D network structure with uniform distribution of λ-MnO2 nanosheets on rGO. Electrochemical characterization demonstrated its high conductivity and fast lithium ion diffusion rate. By adjusting the rGO concentration, λ-MnO2 activity was improved significantly. With λ-MnO2/rGO as a positive electrode (activated carbon as negative electrode), the corresponding CDI system was successfully applied for the selective extraction of Li+. The final rGO content in the λ-MnO2/rGO was attained by thermogravity analysis. With the appropriate rGO content (15.5%), the obtained λ-MnO2/rGO electrode achieved the optimal Li+ adsorption amount. The corresponding λ-MnO2/rGO-based CDI cell showed good selectivity and high cycle stability. When applied to the extraction of lithium from synthetic salt lake brine, the electrode also obtained high Li+ adsorption amount with good selectivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI