摘要
Geopolymers are novel cementitious materials that have the potential to replace conventional Portland cement composites completely. The production of geopolymer composites has a lower carbon footprint and uses less energy than the production of Portland cement. Recently efforts have been made to incorporate different types of nanoparticles (NPs) in geopolymer composites to enhance the properties of the composite with improved performances. Nanotechnology is one of the most active research areas with novel science and valuable applications that have gradually gained attention, especially during the last two decades. Many studies have been undertaken to date in order to understand better the impacts of NPs addition on the fresh, physical, mechanical, durability, and microstructure properties of geopolymer composites. In the current comprehensive review paper, the effects of different NP types on the most essential fresh, mechanical, durability, and microstructure characteristics of geopolymer paste, mortar, and concrete composites were reviewed, analyzed, and discussed in detail. In this regard, more than 280 published papers were used to create an extensive database that includes the main features of geopolymer composites modified with different NPs. In addition, the main mechanisms behind the influence of different NP types on the properties of geopolymer composites were examined. Past progress, recent drifts, current obstacles, and the benefits and drawbacks of these geopolymer composites enhanced with NPs were also highlighted. Based on the findings of this study, the addition of NPs has a promising future for developing high-performance geopolymer composites that the construction industry can efficiently implement due to significant improvements in strength, durability, microstructure by providing additional C–S–H, N-A-S-H, and C-A-S-H gels as well as filling nano-pores in the geopolymer matrix.