Epoxy Resins

环氧树脂 双酚A 环氧氯丙烷 固化(化学) 环氧化物 双酚 高分子化学 化学 缩水甘油醚 有机化学 苯酚 阳离子聚合 热固性聚合物 合成树脂 材料科学 催化作用
作者
Ha Pham,Maurice J. Marks
出处
期刊:Ullmann's Encyclopedia of Industrial Chemistry 被引量:74
标识
DOI:10.1002/14356007.a09_547.pub2
摘要

Abstract Epoxy resins are reactive intermediates used to produce a versatile class of thermosetting polymers. They are characterized by the presence of a three‐membered cyclic ether group commonly referred to as an epoxy group, 1,2‐epoxide, or oxirane. The most widely used epoxy resins are diglycidyl ethers of bisphenol A derived from bisphenol A and epichlorohydrin. The outstanding performance characteristics of the thermosets derived from bisphenol A epoxies are largely conveyed by the bisphenol A moiety (toughness, rigidity, and elevated temperature performance), the ether linkages (chemical resistance), and the hydroxyl and epoxy groups (adhesive agents). In addition to bisphenol A, other starting materials such as aliphatic glycols and both phenol and o ‐cresol novolacs are used to produce specialty resins. Epoxy resins may also include epoxide‐bearing compounds based on aromatic amine, triazine, and cycloaliphatic backbones. A variety of reagents have been described for converting the liquid and solid epoxy resins to the cured state, which is necessary for the development of the ultimate end‐use properties. The curing agents or hardeners are categorized as either catalytic or coreactive. Catalytic curing agents initiate resin homopolymerization, either cationic or anionic, as a consequence of using a Lewis acid or base in the curing process. Coreactive curing agents are polyfunctional compounds typically possessing active hydrogens that are employed up to stoichiometric quantities with epoxy resins. The important classes of coreactive curing agents include multifunctional amines and their amide derivatives, polyphenols, polymeric thiols, polycarboxylic acids, anhydrides, phenol–formaldehyde novolacs and resoles, and amino–formaldehyde resins. The largest single use of epoxy resins is in the protective coatings market where high corrosion resistance and adhesion to substrates are important. Epoxies have gained wide acceptance in protective coatings and in electrical and structural applications because of their exceptional combination of properties such as toughness, adhesion, chemical and thermal resistance, and good electrical properties. The article contains sections titled: 1. Introduction 2. History 3. Industry Overview 4. Classes of Epoxy Resins and Manufacturing Processes 5. Liquid Epoxy Resins (DGEBA) 5.1. Caustic Coupling Process 5.2. Phase‐Transfer Catalyst Process 6. Solid Epoxy Resins Based on DGEBA 6.1. SER Continuous Advancement Process 6.2. Phenoxy Resins 6.3. Epoxy‐Based Thermoplastics 7. Halogenated Epoxy Resins 7.1. Brominated Bisphenol A Based Epoxy Resins 7.2. Fluorinated Epoxy Resins 8. Multifunctional Epoxy Resins 8.1. Epoxy Novolac Resins 8.1.1. Bisphenol F Epoxy Resin 8.1.2. Cresol Epoxy Novolacs 8.1.3. Glycidyl Ethers of Hydrocarbon Epoxy Novolacs 8.1.4. Bisphenol A Epoxy Novolacs 8.2. Other Polynuclear Phenol Glycidyl Ether Derived Resins 8.2.1. Glycidyl Ether of Tetrakis(4‐hydroxyphenyl)ethane 8.2.2. Trisphenol Epoxy Novolacs 8.3. Aromatic Glycidyl Amine Resins 8.3.1. Triglycidyl Ether of p ‐Aminophenol 8.3.2. Tetraglycidyl Methylenedianiline (MDA) 9. Specialty Epoxy Resins 9.1. Crystalline Epoxy Resins Development 9.2. Weatherable Epoxy Resins 9.2.1. Hydrogenated DGEBA 9.2.2. Heterocyclic Glycidyl Imides and Amides 9.2.3. Hydantoin‐Based Epoxy Resins 9.3. Elastomer‐Modified Epoxies 10. Monofunctional Glycidyl Ethers and Aliphatic Glycidyl Ethers 11. Cycloaliphatic Epoxy Resins and Epoxidized Vegetable Oils 12. Epoxy Esters and Derivatives 12.1. Epoxy Esters 12.2. Glycidyl Esters 12.3. Epoxy Acrylates 12.4. Epoxy Vinyl Esters 12.5. Epoxy Phosphate Esters 13. Characterization of Uncured Epoxies 14. Curing of Epoxy Resins 15. Coreactive Curing Agents 15.1. Amine Functional Curing Agents 15.1.1. Primary and Secondary Amines 15.1.1.1. Aliphatic Amines 15.1.1.1.1. Ketimines 15.1.1.1.2. Mannich Base Adducts 15.1.1.1.3. Polyetheramines 15.1.1.2. Cycloaliphatic Amines 15.1.1.3. Aromatic Amines 15.1.1.4. Arylyl Amines 15.1.2. Polyamides 15.1.3. Amidoamines 15.1.4. Dicyandiamide 15.2. Carboxylic Functional Polyester and Anhydride Curing Agents 15.2.1. Carboxylic Functional Polyesters 15.2.2. Acid Anhydrides 15.3. Phenolic‐Terminated Curing Agents 15.4. Melamine‐, Urea‐, and Phenol‐Formaldehyde Resins 15.5. Mercaptans (Polysulfides and Polymercaptans) Curing Agents 15.6. Cyclic Amidines Curing Agents 15.7. Isocyanate Curing Agents 15.8. Cyanate Ester Curing Agents 16. Catalytic Cure 16.1. Lewis Bases 16.2. Lewis Acids 16.3. Photoinitiated Cationic Cure 17. Formulation Development With Epoxy Resins 17.1. Relationship Between Cured Epoxy Resin Structure and Properties 17.2. Selection of Epoxy Resins 17.3. Selection of Curing Agents 17.4. Epoxy/Curing Agent Stoichiometric Ratios 17.5. Catalysts 17.6. Accelerators 18. Epoxy Curing Process 18.1. Characterization of Epoxy Curing and Cured Networks 19. Formulation Modifiers 19.1. Diluents 19.2. Thixotropic Agents 19.3. Fillers 19.4. Epoxy Nanocomposites 19.5. Toughening Agents and Flexiblizers 20. Coatings Applications 20.1. Coatings Application Technologies 20.1.1. Low Solids Solventborne Coatings 20.1.2. High Solids Solventborne Coatings 20.1.3. Solvent‐Free Coatings (100 % Solids) 20.1.4. Waterborne Coatings 20.1.5. Powder Coatings 20.1.6. Radiation‐Curable Coatings 20.2. Epoxy Coatings Markets 20.2.1. Marine and Industrial Maintenance Coatings 20.2.2. Metal Container and Coil Coatings 20.2.3. Automotive Coatings 20.3. Inks and Resists 21. Structural Applications 21.1. Structural Composites 21.1.1. Epoxy Composites 21.1.2. Epoxy Vinyl Ester Composites 21.1.3. Mineral‐Filled Composites 21.2. Civil Engineering, Flooring, and Construction 21.3. Electrical Laminates 21.4. Other Electrical and Electronic Applications 21.4.1. Casting, Potting, and Encapsulation 21.4.2. Transfer Molding 21.5. Adhesives 21.6. Tooling 22. Health and Safety Factors 23. Acknowledgments
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
等效边界完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
学生白完成签到,获得积分10
刚刚
英姑应助猇会不会采纳,获得10
1秒前
DY完成签到,获得积分10
2秒前
2秒前
Charles完成签到,获得积分10
2秒前
心灵美从寒完成签到,获得积分10
2秒前
wy完成签到,获得积分10
3秒前
3秒前
Steve发布了新的文献求助10
3秒前
Uncanny完成签到,获得积分10
4秒前
小二郎应助mumu三采纳,获得10
4秒前
chuyan完成签到,获得积分10
4秒前
5秒前
Liana_Liu完成签到,获得积分10
5秒前
5秒前
sci完成签到,获得积分10
5秒前
夏荧荧完成签到,获得积分20
5秒前
CSwhy完成签到,获得积分10
6秒前
绺妙发布了新的文献求助10
6秒前
Orange应助DY采纳,获得10
6秒前
小林子发布了新的文献求助10
7秒前
cute发布了新的文献求助10
7秒前
萌萌雨完成签到,获得积分10
7秒前
动点子智慧完成签到,获得积分10
8秒前
英俊的铭应助万木采纳,获得10
8秒前
yuancw完成签到 ,获得积分10
8秒前
猪肉铺完成签到,获得积分10
8秒前
8秒前
wu完成签到 ,获得积分10
9秒前
9秒前
hill完成签到,获得积分10
9秒前
10秒前
电闪完成签到,获得积分10
10秒前
冬瓜熊发布了新的文献求助10
10秒前
灵巧代柔完成签到,获得积分10
10秒前
10秒前
还好完成签到 ,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904