A 2.5D semantic segmentation of the pancreas using attention guided dual context embedded U-Net

计算机科学 分割 人工智能 体素 背景(考古学) 模式识别(心理学) 卷积神经网络 预处理器 推论 计算机视觉 图像分割 特征(语言学) 语言学 生物 哲学 古生物学
作者
Jingyuan Li,Guanqun Liao,Wenfang Sun,Ji Sun,Sheng Tai,Kaibin Zhu,Karen M. von Deneen,Yi Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:480: 14-26 被引量:24
标识
DOI:10.1016/j.neucom.2022.01.044
摘要

Automatic segmentation of the pancreas from medical images is important for clinical assessment of pancreas-related diseases. However, pancreatic segmentation based on computer tomography (CT) images is time-consuming and prone to errors because of the variances in shape and texture. Since various studies based on 2D/3D convolution neural networks (CNNs) have achieved encouraging performance for medical image segmentation, the 2D methods enjoy low inference time but suffer from a lack of 3D information. 3D methods are superior in performance for difficult targets requiring contextual information, but encounter the issue of high computational cost. Thus, we proposed a 2.5D segmentation method for pancreatic segmentation to balance utilizing contextual information and the high computational cost. This represents the 3D structural relationship among contiguous slices in a special representation. In the preprocessing stage, light-weight 3D voxels and the corresponding label mapping method were designed to explicitly express the differences in the target structure in contiguous slices. This would enable the network to learn spatial relationships directly. A 2D CNN embedded multi-attention mechanism and dual-context feature fusion method were designed to describe 3D information through 2D operations. In the post-processing stage, a fusion method was used to refine the segmentation results. The proposed method was evaluated on an abdominal contrast-enhanced CT dataset. Results showed Dice was 87.19%. Compared to the corresponding 2D and 3D methods, the proposed 2.5D method improved Dice by 1.14% and 2.80%, and was 60 times faster than the 3D method by using 0.1 times of the trainable parameters. Moreover, evaluations were performed on the NIH Pancreas-CT dataset, and the proposed 2.5D method achieved better segmentation performance than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Malmever完成签到,获得积分10
刚刚
良辰应助小尚要加油采纳,获得10
3秒前
LinMQ完成签到,获得积分10
5秒前
阳佟之槐完成签到,获得积分10
5秒前
Liu完成签到,获得积分20
7秒前
llee2005完成签到,获得积分10
8秒前
桐桐应助周一一采纳,获得10
9秒前
半夏完成签到,获得积分10
9秒前
Silence完成签到,获得积分10
10秒前
快乐小行星完成签到,获得积分10
10秒前
科目三应助出来玩玩采纳,获得10
10秒前
cc完成签到,获得积分20
13秒前
14秒前
星辰大海应助Main采纳,获得10
14秒前
tbbb完成签到,获得积分10
15秒前
HWei完成签到,获得积分10
16秒前
黄百川完成签到 ,获得积分10
16秒前
英姑应助体贴花卷采纳,获得10
16秒前
xiyikounaidi完成签到,获得积分10
17秒前
cc发布了新的文献求助10
17秒前
TheDay完成签到,获得积分10
18秒前
mmm完成签到 ,获得积分10
19秒前
hs发布了新的文献求助20
21秒前
25秒前
25秒前
沉静乾完成签到,获得积分10
26秒前
隔壁小王完成签到 ,获得积分10
26秒前
万能图书馆应助奥利奥采纳,获得10
27秒前
兴尽晚回舟完成签到 ,获得积分10
27秒前
28秒前
29秒前
kingbin发布了新的文献求助10
30秒前
华仔应助xiyikounaidi采纳,获得10
30秒前
可靠的青发布了新的文献求助10
30秒前
31秒前
结实芙发布了新的文献求助10
31秒前
32秒前
39hpl完成签到,获得积分10
32秒前
orixero应助Hh采纳,获得10
32秒前
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999