A 2.5D semantic segmentation of the pancreas using attention guided dual context embedded U-Net

计算机科学 分割 人工智能 体素 背景(考古学) 模式识别(心理学) 卷积神经网络 预处理器 推论 计算机视觉 图像分割 特征(语言学) 语言学 生物 哲学 古生物学
作者
Jingyuan Li,Guanqun Liao,Wenfang Sun,Ji Sun,Sheng Tai,Kaibin Zhu,Karen M. von Deneen,Yi Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:480: 14-26 被引量:29
标识
DOI:10.1016/j.neucom.2022.01.044
摘要

Automatic segmentation of the pancreas from medical images is important for clinical assessment of pancreas-related diseases. However, pancreatic segmentation based on computer tomography (CT) images is time-consuming and prone to errors because of the variances in shape and texture. Since various studies based on 2D/3D convolution neural networks (CNNs) have achieved encouraging performance for medical image segmentation, the 2D methods enjoy low inference time but suffer from a lack of 3D information. 3D methods are superior in performance for difficult targets requiring contextual information, but encounter the issue of high computational cost. Thus, we proposed a 2.5D segmentation method for pancreatic segmentation to balance utilizing contextual information and the high computational cost. This represents the 3D structural relationship among contiguous slices in a special representation. In the preprocessing stage, light-weight 3D voxels and the corresponding label mapping method were designed to explicitly express the differences in the target structure in contiguous slices. This would enable the network to learn spatial relationships directly. A 2D CNN embedded multi-attention mechanism and dual-context feature fusion method were designed to describe 3D information through 2D operations. In the post-processing stage, a fusion method was used to refine the segmentation results. The proposed method was evaluated on an abdominal contrast-enhanced CT dataset. Results showed Dice was 87.19%. Compared to the corresponding 2D and 3D methods, the proposed 2.5D method improved Dice by 1.14% and 2.80%, and was 60 times faster than the 3D method by using 0.1 times of the trainable parameters. Moreover, evaluations were performed on the NIH Pancreas-CT dataset, and the proposed 2.5D method achieved better segmentation performance than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胖蛋蛋蛋发布了新的文献求助10
2秒前
4秒前
5秒前
tclouds完成签到 ,获得积分10
5秒前
HAHA发布了新的文献求助10
6秒前
11发布了新的文献求助10
9秒前
0923发布了新的文献求助10
11秒前
15秒前
儒雅的不愁完成签到 ,获得积分10
16秒前
16秒前
科研通AI2S应助yuzaidididi采纳,获得10
17秒前
18秒前
一颗糖完成签到 ,获得积分10
19秒前
zoes发布了新的文献求助10
20秒前
幸运的果子狸完成签到,获得积分10
20秒前
zm完成签到,获得积分10
22秒前
小刘小刘发布了新的文献求助10
23秒前
23秒前
所所应助LLL采纳,获得10
24秒前
无极微光应助zoes采纳,获得20
25秒前
乐乐应助wuyanan513采纳,获得10
26秒前
sskr完成签到,获得积分10
26秒前
科研通AI6.1应助芝麻开花采纳,获得10
27秒前
GXY完成签到 ,获得积分10
28秒前
Akim应助小刘小刘采纳,获得10
28秒前
29秒前
18318933768完成签到,获得积分10
29秒前
0923完成签到,获得积分10
30秒前
南雪既白完成签到,获得积分10
30秒前
小慧儿完成签到 ,获得积分10
30秒前
CipherSage应助科研通管家采纳,获得10
32秒前
32秒前
田様应助刘玄德采纳,获得10
34秒前
老福贵儿应助牧青采纳,获得10
34秒前
PennySun完成签到,获得积分10
35秒前
高天雨完成签到 ,获得积分10
36秒前
LLL发布了新的文献求助10
38秒前
烟花应助太叔文博采纳,获得10
39秒前
烟花应助齐欣采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868166
求助须知:如何正确求助?哪些是违规求助? 6438782
关于积分的说明 15657843
捐赠科研通 4983526
什么是DOI,文献DOI怎么找? 2687517
邀请新用户注册赠送积分活动 1630201
关于科研通互助平台的介绍 1588271