A 2.5D semantic segmentation of the pancreas using attention guided dual context embedded U-Net

计算机科学 分割 人工智能 体素 背景(考古学) 模式识别(心理学) 卷积神经网络 预处理器 推论 计算机视觉 图像分割 特征(语言学) 语言学 生物 哲学 古生物学
作者
Jingyuan Li,Guanqun Liao,Wenfang Sun,Ji Sun,Sheng Tai,Kaibin Zhu,Karen M. von Deneen,Yi Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:480: 14-26 被引量:24
标识
DOI:10.1016/j.neucom.2022.01.044
摘要

Automatic segmentation of the pancreas from medical images is important for clinical assessment of pancreas-related diseases. However, pancreatic segmentation based on computer tomography (CT) images is time-consuming and prone to errors because of the variances in shape and texture. Since various studies based on 2D/3D convolution neural networks (CNNs) have achieved encouraging performance for medical image segmentation, the 2D methods enjoy low inference time but suffer from a lack of 3D information. 3D methods are superior in performance for difficult targets requiring contextual information, but encounter the issue of high computational cost. Thus, we proposed a 2.5D segmentation method for pancreatic segmentation to balance utilizing contextual information and the high computational cost. This represents the 3D structural relationship among contiguous slices in a special representation. In the preprocessing stage, light-weight 3D voxels and the corresponding label mapping method were designed to explicitly express the differences in the target structure in contiguous slices. This would enable the network to learn spatial relationships directly. A 2D CNN embedded multi-attention mechanism and dual-context feature fusion method were designed to describe 3D information through 2D operations. In the post-processing stage, a fusion method was used to refine the segmentation results. The proposed method was evaluated on an abdominal contrast-enhanced CT dataset. Results showed Dice was 87.19%. Compared to the corresponding 2D and 3D methods, the proposed 2.5D method improved Dice by 1.14% and 2.80%, and was 60 times faster than the 3D method by using 0.1 times of the trainable parameters. Moreover, evaluations were performed on the NIH Pancreas-CT dataset, and the proposed 2.5D method achieved better segmentation performance than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond应助南巷采纳,获得10
刚刚
Su发布了新的文献求助10
刚刚
idemipere发布了新的文献求助10
刚刚
福尔摩曦完成签到,获得积分10
刚刚
星点点发布了新的文献求助10
1秒前
Jianing发布了新的文献求助10
2秒前
2秒前
sisi发布了新的文献求助10
3秒前
bai发布了新的文献求助10
3秒前
3秒前
廉不可发布了新的文献求助10
6秒前
zhendema完成签到,获得积分10
6秒前
希望天下0贩的0应助66666采纳,获得10
6秒前
7秒前
hhhi发布了新的文献求助10
7秒前
无情的牛马完成签到,获得积分10
8秒前
8秒前
Lili完成签到,获得积分10
9秒前
Hello应助可靠白昼采纳,获得10
9秒前
sasa完成签到,获得积分10
10秒前
小宋发布了新的文献求助30
10秒前
10秒前
11秒前
科研通AI2S应助室内设计采纳,获得10
11秒前
zdy发布了新的文献求助10
12秒前
13秒前
zz完成签到,获得积分10
13秒前
Victor陈完成签到,获得积分10
14秒前
anonym11完成签到,获得积分10
14秒前
bai完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
郭萌萌完成签到,获得积分10
16秒前
迟迟池给迟迟池的求助进行了留言
16秒前
奋斗的秋珊完成签到,获得积分10
17秒前
可爱的函函应助Victor陈采纳,获得10
18秒前
18秒前
18秒前
浅唱完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011199
求助须知:如何正确求助?哪些是违规求助? 3550895
关于积分的说明 11306713
捐赠科研通 3285098
什么是DOI,文献DOI怎么找? 1810962
邀请新用户注册赠送积分活动 886662
科研通“疑难数据库(出版商)”最低求助积分说明 811581