Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China

经济 面板数据 温室气体 差异中的差异 市场化 计量经济学 中国 环境经济学 自然资源经济学 地理 生态学 生物 考古
作者
Dawei Huang,Gang Chen
出处
期刊:International Journal of Environmental Research and Public Health [MDPI AG]
卷期号:19 (3): 1209-1209 被引量:28
标识
DOI:10.3390/ijerph19031209
摘要

The carbon emission trading system (CETS) is an important market-oriented policy tool for the Chinese government to solve the problem of high emissions and achieve the growth of green total factor productivity (GTFP). This study makes up for the neglect of the spatial effect of CETS policy in previous studies and adopts the spatial difference-in-differences (DID) Durbin model (SDID-SDM) method of two-way fixed effects to scientifically identify the direct and spatial effects influencing the mechanisms and heterogeneity of CETS on urban GTFP based on the panel data of 281 cities in China from 2004 to 2017. It found that China’s CETS significantly improved the GTFP of pilot cities but produced a negative spatial siphon effect that restricted the growth of GTFP in surrounding cities. Benchmark results are robust under the placebo test, the propensity score matching SDID (PSM-SDID) test, and the difference-in difference-in-differences (DDD) test. The mechanism analysis shows that the CETS effect is mainly realized by improving energy efficiency, promoting low-carbon innovation, adjusting the industrial structure, and enhancing financial agglomeration. In addition, we find that policy effects are better in cities with high marketization, strong monitoring reporting and verification (MRV) capabilities, high coal endowment, and high financial endowment. Overall, China’s CETS policy achieves the goal of enhancing GTFP but needs to pay attention to the spatial siphon effect. In addition, our estimation strategy can serve as a scientific reference for similar studies in other developing countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgh完成签到,获得积分10
刚刚
001关闭了001文献求助
1秒前
研友_VZG7GZ应助Fareth采纳,获得10
1秒前
2秒前
韭菜盒子发布了新的文献求助10
2秒前
2秒前
大意的安白完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
学术蟑螂完成签到,获得积分10
3秒前
3秒前
3秒前
兴奋冷松完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
饭小心完成签到,获得积分20
4秒前
luodd完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
6秒前
小吴发布了新的文献求助10
6秒前
甜甜灵槐发布了新的文献求助10
7秒前
yyang发布了新的文献求助10
7秒前
7秒前
超级水壶发布了新的文献求助10
7秒前
manan发布了新的文献求助10
7秒前
7秒前
fxy完成签到 ,获得积分10
8秒前
爆米花应助大意的安白采纳,获得10
8秒前
wen完成签到,获得积分10
8秒前
Lucas应助徐慕源采纳,获得10
8秒前
袁国惠发布了新的文献求助10
8秒前
加油发布了新的文献求助10
8秒前
天天快乐应助韭菜盒子采纳,获得10
8秒前
9秒前
圣晟胜发布了新的文献求助10
9秒前
耍酷的白梦完成签到,获得积分10
9秒前
斯文的若颜完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740