Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China

经济 面板数据 温室气体 差异中的差异 市场化 计量经济学 中国 环境经济学 自然资源经济学 地理 生态学 生物 考古
作者
Dawei Huang,Gang Chen
出处
期刊:International Journal of Environmental Research and Public Health [MDPI AG]
卷期号:19 (3): 1209-1209 被引量:28
标识
DOI:10.3390/ijerph19031209
摘要

The carbon emission trading system (CETS) is an important market-oriented policy tool for the Chinese government to solve the problem of high emissions and achieve the growth of green total factor productivity (GTFP). This study makes up for the neglect of the spatial effect of CETS policy in previous studies and adopts the spatial difference-in-differences (DID) Durbin model (SDID-SDM) method of two-way fixed effects to scientifically identify the direct and spatial effects influencing the mechanisms and heterogeneity of CETS on urban GTFP based on the panel data of 281 cities in China from 2004 to 2017. It found that China’s CETS significantly improved the GTFP of pilot cities but produced a negative spatial siphon effect that restricted the growth of GTFP in surrounding cities. Benchmark results are robust under the placebo test, the propensity score matching SDID (PSM-SDID) test, and the difference-in difference-in-differences (DDD) test. The mechanism analysis shows that the CETS effect is mainly realized by improving energy efficiency, promoting low-carbon innovation, adjusting the industrial structure, and enhancing financial agglomeration. In addition, we find that policy effects are better in cities with high marketization, strong monitoring reporting and verification (MRV) capabilities, high coal endowment, and high financial endowment. Overall, China’s CETS policy achieves the goal of enhancing GTFP but needs to pay attention to the spatial siphon effect. In addition, our estimation strategy can serve as a scientific reference for similar studies in other developing countries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助ALEXK采纳,获得10
1秒前
1秒前
哀伤发布了新的文献求助10
1秒前
英俊的铭应助liyiliyi117采纳,获得10
2秒前
29完成签到,获得积分10
2秒前
3秒前
3秒前
zhangshenrong完成签到 ,获得积分10
3秒前
吃皮发布了新的文献求助10
3秒前
3秒前
3秒前
玲子君完成签到,获得积分10
4秒前
4秒前
4秒前
孤辰关注了科研通微信公众号
4秒前
猴面包树发布了新的文献求助10
4秒前
打打应助科研通管家采纳,获得10
5秒前
nasa应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得30
5秒前
5秒前
是谁还没睡完成签到 ,获得积分10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
SMZ应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
ShawnJohn应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
shoanofna应助科研通管家采纳,获得10
6秒前
zz完成签到,获得积分10
6秒前
泡泡应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得80
6秒前
6秒前
smottom应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409