Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China

经济 面板数据 温室气体 差异中的差异 市场化 计量经济学 中国 环境经济学 自然资源经济学 地理 生态学 生物 考古
作者
Dawei Huang,Gang Chen
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:19 (3): 1209-1209 被引量:28
标识
DOI:10.3390/ijerph19031209
摘要

The carbon emission trading system (CETS) is an important market-oriented policy tool for the Chinese government to solve the problem of high emissions and achieve the growth of green total factor productivity (GTFP). This study makes up for the neglect of the spatial effect of CETS policy in previous studies and adopts the spatial difference-in-differences (DID) Durbin model (SDID-SDM) method of two-way fixed effects to scientifically identify the direct and spatial effects influencing the mechanisms and heterogeneity of CETS on urban GTFP based on the panel data of 281 cities in China from 2004 to 2017. It found that China’s CETS significantly improved the GTFP of pilot cities but produced a negative spatial siphon effect that restricted the growth of GTFP in surrounding cities. Benchmark results are robust under the placebo test, the propensity score matching SDID (PSM-SDID) test, and the difference-in difference-in-differences (DDD) test. The mechanism analysis shows that the CETS effect is mainly realized by improving energy efficiency, promoting low-carbon innovation, adjusting the industrial structure, and enhancing financial agglomeration. In addition, we find that policy effects are better in cities with high marketization, strong monitoring reporting and verification (MRV) capabilities, high coal endowment, and high financial endowment. Overall, China’s CETS policy achieves the goal of enhancing GTFP but needs to pay attention to the spatial siphon effect. In addition, our estimation strategy can serve as a scientific reference for similar studies in other developing countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
易达发布了新的文献求助30
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
王富贵发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
情怀应助哈哈采纳,获得10
2秒前
Www完成签到,获得积分10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
jamesyang发布了新的文献求助30
2秒前
yar应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
孙福禄应助科研通管家采纳,获得10
3秒前
Liufgui应助科研通管家采纳,获得20
3秒前
晶晶完成签到,获得积分10
4秒前
5秒前
张雯思发布了新的文献求助10
6秒前
彭于晏应助疯狂的丹珍采纳,获得30
6秒前
6秒前
Owen应助zsm采纳,获得10
8秒前
殊桐关注了科研通微信公众号
8秒前
9秒前
可爱的函函应助山楂采纳,获得10
9秒前
9秒前
10秒前
打打应助思维隋采纳,获得10
10秒前
Sco发布了新的文献求助10
10秒前
共享精神应助FleurdelisDZhang采纳,获得10
11秒前
11秒前
杨纨成发布了新的文献求助10
11秒前
汉堡包应助健康的往事采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075