Multi-Armed Bandits Learning for Task Offloading in Maritime Edge Intelligence Networks

计算机科学 能源消耗 边缘计算 计算卸载 延迟(音频) 服务质量 分布式计算 移动边缘计算 服务器 计算机网络 边缘设备 GSM演进的增强数据速率 云计算 人工智能 工程类 操作系统 电气工程 电信
作者
Tingting Yang,Shan Gao,Jiabo Li,Meng Qin,Xin Sun,Ran Zhang,Miao Wang,Xianbin Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (4): 4212-4224 被引量:23
标识
DOI:10.1109/tvt.2022.3141740
摘要

In the context of complex and dynamic marine environment, the offloading of computing tasks for ships of Internet of Things (IoT) users is a very challenging problem considering the different quality of service (QoS) requirements of maritime applications. Mobile edge computing driven by powerful computing capability and edge intelligence is taken as a promising solution, especially for the resource-constrained and delay-sensitive maritime IoT users. In this paper, we study the optimal edge server selection problem for ship IoT users to jointly minimize the latency and energy consumption for task offloading. Specifically, we first propose a novel space-air-ground-edge (SAGE) integrated maritime network architecture to offload computation-intensive IoT services at sea. Then, the latency and energy consumption of data transmission and processing during offloading are modelled. Based on the models, the edge server selection problem is formulated into a Multi-Armed Bandits learning problem, with considering the task latency requirement and energy budget. To achieve the optimal solution, a novel algorithm, referred to as UCB1-ESSS, is developed, which links the latency, energy consumption, and network constraints by introducing both reward and cost. The simulation results show that the proposed algorithm can achieve considerably lower offloading latency and weighted latency-energy cost compared with the traditional algorithms under different QoS requirements, which proves the efficacy of theproposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
霜降发布了新的文献求助10
3秒前
xin完成签到,获得积分10
4秒前
从容秋寒发布了新的文献求助10
5秒前
英俊的铭应助飞扬采纳,获得10
5秒前
5秒前
大胆笑翠完成签到,获得积分10
5秒前
血小板发布了新的文献求助10
6秒前
科研通AI5应助刘宇翔采纳,获得10
7秒前
Chris小七完成签到,获得积分10
8秒前
海风完成签到,获得积分10
9秒前
xin发布了新的文献求助20
9秒前
ccc完成签到,获得积分20
10秒前
完美世界应助烂漫幼枫采纳,获得10
10秒前
吴雨峰发布了新的文献求助10
10秒前
追寻的梦凡完成签到,获得积分10
11秒前
科研通AI5应助Chris小七采纳,获得10
12秒前
FashionBoy应助bbbabo采纳,获得10
13秒前
13秒前
自由的尔蓉完成签到 ,获得积分10
13秒前
包容不二完成签到 ,获得积分20
18秒前
18秒前
20秒前
科研小民工应助王路飞采纳,获得30
20秒前
shuicaoxi完成签到,获得积分10
22秒前
JYF完成签到,获得积分10
23秒前
阿布手机完成签到,获得积分10
27秒前
gy发布了新的文献求助10
27秒前
wwl完成签到,获得积分10
27秒前
28秒前
包容不二关注了科研通微信公众号
30秒前
33秒前
33秒前
科研通AI5应助超级月饼采纳,获得10
34秒前
FreyaDoyle完成签到 ,获得积分10
34秒前
35秒前
36秒前
阿布手机发布了新的文献求助10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696486
求助须知:如何正确求助?哪些是违规求助? 3248358
关于积分的说明 9857190
捐赠科研通 2959797
什么是DOI,文献DOI怎么找? 1622923
邀请新用户注册赠送积分活动 768341
科研通“疑难数据库(出版商)”最低求助积分说明 741511