已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning

暖通空调 能源消耗 计算机科学 数据预处理 露点 特征选择 数据挖掘 机器学习 空调 工程类 机械工程 电气工程 物理 气象学
作者
Ziwei Xiao,Wenjie Gang,Jiaqi Yuan,Zhuolun Chen,Li Ji,Xuan Wang,Xiaomei Feng
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:258: 111832-111832 被引量:65
标识
DOI:10.1016/j.enbuild.2022.111832
摘要

Accurate energy consumption prediction is the basis of predictive control for heating, ventilation and air conditioning (HVAC) systems. Data-driven models are widely used for energy consumption prediction. The prediction accuracy can be affected by data preprocessing or selection, which are not well studied yet. This paper attempts to study the impacts of different data processing methods and feature selection on the HVAC energy consumption prediction based on data-driven models. Long and short-term memory models are developed based on historical data to predict the day-ahead hourly energy consumption of HVAC systems. Two data smoothing methods, Gaussian kernel density estimation and Savitzky-Golay filter, are selected and compared. The impacts of feature selection, training set volumes and update frequency of models are analyzed and compared. To obtain general results of the above problems, three office buildings are selected. Results show that the smoothing methods can not ensure the improvement in accuracy by removing the exceptional data in the raw data which arise reasonably in practice. The inputs with raw 1-day historical energy consumption, the dry-bulb temperature and dew-point temperature in the next day, holiday type and day type is recommended to predict day-ahead HVAC energy consumption. It is recommended to use a larger training set if computing cost is acceptable. The model should be updated after being used for over 7 weeks. This study would guide the development of prediction models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sl完成签到 ,获得积分10
6秒前
彭于晏应助好A采纳,获得10
6秒前
11秒前
12秒前
fann完成签到 ,获得积分10
14秒前
科研通AI5应助杨一采纳,获得10
16秒前
17秒前
土书完成签到,获得积分10
18秒前
20秒前
充电宝应助Iris采纳,获得10
21秒前
Kz发布了新的文献求助10
21秒前
wy.he应助芜厸采纳,获得10
23秒前
wy.he应助芜厸采纳,获得10
24秒前
wy.he应助芜厸采纳,获得10
24秒前
HEIKU应助猪猪hero采纳,获得10
26秒前
科研助手6应助猪猪hero采纳,获得10
26秒前
班小班完成签到,获得积分10
27秒前
27秒前
Qyyy完成签到,获得积分10
29秒前
Ava应助Kz采纳,获得30
29秒前
听闻墨笙完成签到 ,获得积分10
31秒前
boomzycz发布了新的文献求助10
33秒前
渝州人完成签到,获得积分10
36秒前
华仔应助sln采纳,获得10
45秒前
53秒前
17完成签到,获得积分10
54秒前
zcc完成签到,获得积分10
55秒前
57秒前
wjy发布了新的文献求助10
59秒前
杨一发布了新的文献求助10
1分钟前
sln发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
wjy关注了科研通微信公众号
1分钟前
LOKL完成签到,获得积分10
1分钟前
桐桐应助机灵大炮采纳,获得10
1分钟前
Ying完成签到,获得积分10
1分钟前
青雉发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775810
求助须知:如何正确求助?哪些是违规求助? 3321421
关于积分的说明 10205344
捐赠科研通 3036413
什么是DOI,文献DOI怎么找? 1666113
邀请新用户注册赠送积分活动 797294
科研通“疑难数据库(出版商)”最低求助积分说明 757794