亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Recurrent Neural Networks for Hyperspectral Image Classification

循环神经网络 高光谱成像 人工智能 计算机科学 深度学习 模式识别(心理学) 卷积神经网络 人工神经网络 支持向量机 像素 激活函数
作者
Lichao Mou,Pedram Ghamisi,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (7): 3639-3655 被引量:1053
标识
DOI:10.1109/tgrs.2016.2636241
摘要

In recent years, vector-based machine learning algorithms, such as random forests, support vector machines, and 1-D convolutional neural networks, have shown promising results in hyperspectral image classification. Such methodologies, nevertheless, can lead to information loss in representing hyperspectral pixels, which intrinsically have a sequence-based data structure. A recurrent neural network (RNN), an important branch of the deep learning family, is mainly designed to handle sequential data. Can sequence-based RNN be an effective method of hyperspectral image classification? In this paper, we propose a novel RNN model that can effectively analyze hyperspectral pixels as sequential data and then determine information categories via network reasoning. As far as we know, this is the first time that an RNN framework has been proposed for hyperspectral image classification. Specifically, our RNN makes use of a newly proposed activation function, parametric rectified tanh (PRetanh), for hyperspectral sequential data analysis instead of the popular tanh or rectified linear unit. The proposed activation function makes it possible to use fairly high learning rates without the risk of divergence during the training procedure. Moreover, a modified gated recurrent unit, which uses PRetanh for hidden representation, is adopted to construct the recurrent layer in our network to efficiently process hyperspectral data and reduce the total number of parameters. Experimental results on three airborne hyperspectral images suggest competitive performance in the proposed mode. In addition, the proposed network architecture opens a new window for future research, showcasing the huge potential of deep recurrent networks for hyperspectral data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷的飞凤应助七七七采纳,获得10
10秒前
18秒前
冬去春来完成签到 ,获得积分10
53秒前
李健的小迷弟应助fanle1采纳,获得10
1分钟前
松鼠完成签到 ,获得积分10
1分钟前
1分钟前
fanle1发布了新的文献求助10
1分钟前
2分钟前
twk发布了新的文献求助10
2分钟前
Eva111完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
小透明应助科研通管家采纳,获得10
3分钟前
949发布了新的文献求助10
3分钟前
3分钟前
七七七发布了新的文献求助10
3分钟前
七七七完成签到,获得积分10
4分钟前
情怀应助ling361采纳,获得10
4分钟前
4分钟前
11111发布了新的文献求助10
4分钟前
4分钟前
11111完成签到,获得积分10
4分钟前
小透明应助科研通管家采纳,获得10
5分钟前
林夕完成签到 ,获得积分10
5分钟前
浚稚完成签到 ,获得积分10
5分钟前
ShengQ完成签到,获得积分10
5分钟前
烟花应助羽生结弦的馨馨采纳,获得10
6分钟前
6分钟前
6分钟前
羽生结弦的馨馨完成签到,获得积分10
6分钟前
6分钟前
小透明应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
ling361发布了新的文献求助10
8分钟前
8分钟前
Zzz_Carlos完成签到 ,获得积分10
9分钟前
照照完成签到,获得积分10
9分钟前
隐形曼青应助照照采纳,获得10
9分钟前
twk发布了新的文献求助10
10分钟前
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655711
求助须知:如何正确求助?哪些是违规求助? 3218544
关于积分的说明 9724492
捐赠科研通 2927071
什么是DOI,文献DOI怎么找? 1602990
邀请新用户注册赠送积分活动 755892
科研通“疑难数据库(出版商)”最低求助积分说明 733603