Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer

三阴性乳腺癌 乳腺癌 生殖系 种系突变 计算生物学 癌症 医学 癌症研究 生物信息学 肿瘤科 内科学 生物 突变 基因 遗传学
作者
Shen Zhao,Chaoyang Yan,Hong Lv,Jingcheng Yang,Chao You,Ziang Li,Ding Ma,Yi Xiao,Jia Hu,Wentao Yang,Yi‐Zhou Jiang,Jun Xu,Zhi‐Ming Shao
出处
期刊:Fundamental research [Elsevier]
卷期号:4 (3): 678-689 被引量:17
标识
DOI:10.1016/j.fmre.2022.06.008
摘要

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N=425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images (WSIs). The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P<0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N=143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoyan完成签到,获得积分10
刚刚
科研人完成签到,获得积分10
刚刚
刚刚
刚刚
124cndhaP完成签到,获得积分10
1秒前
Accpted河豚完成签到,获得积分10
1秒前
NexusExplorer应助专注钢笔采纳,获得10
1秒前
东山完成签到,获得积分10
2秒前
AY完成签到 ,获得积分10
2秒前
de完成签到,获得积分10
2秒前
zyfzyf完成签到,获得积分10
2秒前
求助人员发布了新的文献求助80
2秒前
Amazing完成签到 ,获得积分10
3秒前
香蕉以菱完成签到,获得积分10
3秒前
兔兔酱发布了新的文献求助10
5秒前
再美完成签到,获得积分10
5秒前
stride21完成签到,获得积分10
5秒前
5秒前
de发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
华仔应助天行马采纳,获得10
7秒前
太叔文博完成签到,获得积分10
7秒前
小明完成签到,获得积分10
7秒前
清秀凡霜完成签到,获得积分10
8秒前
怡然的乘风完成签到,获得积分10
8秒前
春祭发布了新的文献求助10
9秒前
JamesPei应助Hmbb采纳,获得10
9秒前
云汐儿完成签到,获得积分10
9秒前
9秒前
天上白玉京完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
可靠幼旋完成签到,获得积分10
9秒前
RowanLuo完成签到,获得积分10
10秒前
10秒前
清脆圆子完成签到 ,获得积分10
10秒前
Stella应助鸿汉采纳,获得10
10秒前
DJY完成签到,获得积分10
10秒前
nczpf2010完成签到,获得积分10
10秒前
王钟萱完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626