Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer

三阴性乳腺癌 乳腺癌 生殖系 种系突变 计算生物学 癌症 医学 癌症研究 生物信息学 肿瘤科 内科学 生物 突变 基因 遗传学
作者
Shen Zhao,Chaoyang Yan,Hong Lv,Jingcheng Yang,Chao You,Ziang Li,Ding Ma,Yi Xiao,Jia Hu,Wentao Yang,Yi‐Zhou Jiang,Jun Xu,Zhi‐Ming Shao
出处
期刊:Fundamental research [Elsevier BV]
被引量:11
标识
DOI:10.1016/j.fmre.2022.06.008
摘要

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N=425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images (WSIs). The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P<0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N=143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xylon完成签到 ,获得积分10
刚刚
猛磕CO2的小生给猛磕CO2的小生的求助进行了留言
1秒前
1秒前
2秒前
4秒前
5秒前
拟岸发布了新的文献求助30
5秒前
赵一谋完成签到 ,获得积分10
8秒前
王正浩发布了新的文献求助10
8秒前
淡然以蓝完成签到 ,获得积分10
8秒前
Akim应助TINASURE采纳,获得10
8秒前
123456完成签到,获得积分10
8秒前
genhao7完成签到,获得积分10
9秒前
ei123应助慈祥的巧曼采纳,获得30
9秒前
香辣脆皮坤完成签到,获得积分10
11秒前
12秒前
苇一发布了新的文献求助20
12秒前
深情安青应助哈哈哈采纳,获得10
12秒前
失眠友灵完成签到,获得积分20
15秒前
典雅的鸡完成签到,获得积分10
15秒前
长情的冬瓜完成签到,获得积分10
18秒前
早睡发布了新的文献求助10
18秒前
顺心的皮卡丘完成签到 ,获得积分10
19秒前
19秒前
mmgf完成签到,获得积分10
20秒前
tyx完成签到,获得积分20
21秒前
小恐龙完成签到,获得积分10
21秒前
21秒前
21秒前
Lyy1208885487发布了新的文献求助10
24秒前
24秒前
TINASURE发布了新的文献求助10
25秒前
25秒前
NexusExplorer应助tyx采纳,获得10
26秒前
elmacho完成签到 ,获得积分10
26秒前
思源应助就学一点点采纳,获得10
26秒前
迟早year完成签到,获得积分10
27秒前
杨安安发布了新的文献求助10
27秒前
30秒前
li发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966615
求助须知:如何正确求助?哪些是违规求助? 3512055
关于积分的说明 11161483
捐赠科研通 3246880
什么是DOI,文献DOI怎么找? 1793552
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420