Contribution of prognostic ferroptosis-related subtypes classification and hub genes of sepsis

败血症 基因 生物 比例危险模型 上睑下垂 单变量分析 生物信息学 免疫学 程序性细胞死亡 医学 遗传学 细胞凋亡 多元分析 内科学
作者
Ni Ding,Xiangzhao Xu,Yuting Wang,Huiting Li,Yuling Cao,Lei Zheng
出处
期刊:Transplant Immunology [Elsevier]
卷期号:74: 101660-101660 被引量:2
标识
DOI:10.1016/j.trim.2022.101660
摘要

Sepsis in patients is a great threat to human health due to its high incidence rate, its rapid and unpredictable progression, as well as it is difficult to treat, and it has poor prognosis. Ferroptosis is a newly discovered type of cell death characterized by the iron-dependent peroxide aggregation. Furthermore, ferroptosis is different from other forms of cell death, namely apoptosis, necrosis, pyroptosis and autophagy. Our study investigated the role of ferroptosis-related genes in sepsis.The GSE65682 dataset from the Gene Expression Omnibus (GEO) database was used to screen ferroptosis-related genes associated with sepsis, and the GSE134347 dataset for the external validation of selected hub genes. The univariate Cox regression analysis, Kaplan-Meier (K-M) survival analysis and weighted gene co-expression network analysis (WGCNA) were used to identify hub genes. Evaluation of the immune cell infiltration in sepsis was used to explain the immune heterogeneity among the cell subtypes. Gene set variation analysis (GSVA) and transcriptional regulatory analysis of selected hub genes further elucidated the probable mechanism of ferroptosis-related genes associated with prognosis in sepsis. Finally, we constructed a competing endogenous RNA (ceRNA) network model.A total of 479 RNA-seq data points were used for analysis, including 365 samples from patients who survived sepsis and 114 samples from patients who succumbed to sepsis from the available GSE65682 dataset. Consequently, the univariate Cox regression analysis and consensus clustering analysis divide all 479 sepsis samples into two clusters of "survivals" vs. "non-survivals". Following complex analysis were identified as the most important ferroptosis-related genes. Indeed, the WGCNA and K-M analyses associated the expression patterns of NEDD4L and SIAH2 hub genes as the best prognosis for the survival of sepsis (p < 0.05). The expression trend was also consistent with the survival trend of the NEDD4L and SIAH2 hub genes by the external validation of GSE134347 (p < 0.05). Immune cell infiltration analysis indicated that the types and numbers of different immune cells vary among different subtypes and NEDD4L and SIAH2 hub genes. For example, NEDD4L and SIAH2 gene expression had a positive correlation with M0 macrophages and a negative correlation with neutrophils (p > 0.05). Finally, analysis of two hub genes and transcription factors (TFs) showed that 71 TFs were predicted to be related to NEDD4L while 64 TFs to SIAH2 by the Cistrome DB online database.We suggest that NEDD4L and SIAH2 hub genes are involved in the ferroptosis-associated sepsis. The pattern of NEDD4L and SIAH2 expression in patients undergoing sepsis may have prognostic potential for the severity of sepsis and eventually for patients' survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力山蝶应助小白采纳,获得10
2秒前
xg完成签到,获得积分10
2秒前
Zezezee发布了新的文献求助10
2秒前
笑点低可乐完成签到,获得积分10
3秒前
3秒前
坚强的樱发布了新的文献求助10
3秒前
3秒前
求解限发布了新的文献求助160
3秒前
4秒前
白宝宝北北白应助XIN采纳,获得10
4秒前
wenjian发布了新的文献求助10
4秒前
5秒前
华仔应助jy采纳,获得10
5秒前
hoongyan完成签到 ,获得积分10
5秒前
Ava应助aoxiangcaizi12采纳,获得10
7秒前
Amai完成签到,获得积分10
7秒前
8秒前
九川发布了新的文献求助10
9秒前
风的季节发布了新的文献求助10
9秒前
可耐的乐荷完成签到,获得积分10
10秒前
WEILAI完成签到,获得积分10
10秒前
my发布了新的文献求助10
10秒前
wenjian完成签到,获得积分10
11秒前
11秒前
Accept2024完成签到,获得积分10
12秒前
万能图书馆应助笑笑采纳,获得10
12秒前
伊丽莎白居易完成签到,获得积分10
13秒前
鳗鱼静珊发布了新的文献求助10
13秒前
yuyiyi完成签到,获得积分10
14秒前
无花果应助胖豆采纳,获得10
15秒前
通~发布了新的文献求助10
15秒前
cc发布了新的文献求助10
16秒前
17秒前
MILL发布了新的文献求助10
17秒前
月光入梦完成签到 ,获得积分10
18秒前
HC完成签到,获得积分10
19秒前
琪琪发布了新的文献求助10
19秒前
20秒前
淡定的思松应助风的季节采纳,获得10
21秒前
所所应助mm采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794