Combined Sewer Overflow and Flooding Mitigation Through a Reliable Real‐Time Control Based on Multi‐Reinforcement Learning and Model Predictive Control

模型预测控制 合流下水道 洪水(心理学) 稳健性(进化) 强化学习 控制(管理) 背景(考古学) 防洪 雨水管理模型 计算机科学 雨水 人工智能 地表径流 大洪水 古生物学 心理治疗师 化学 心理学 哲学 基因 生物 生物化学 神学 生态学
作者
Wenchong Tian,Zhenliang Liao,Guozheng Zhi,Zhiyu Zhang,Xuan Wang
出处
期刊:Water Resources Research [Wiley]
卷期号:58 (7) 被引量:12
标识
DOI:10.1029/2021wr030703
摘要

Abstract Real‐time control (RTC) of urban drainage systems (UDS) has been proved an efficient tool in combined sewer overflow (CSO) and flooding mitigation. Recently, new RTC approaches based on reinforcement learning (RL) were developed for flooding mitigation in stormwater systems. While these studies have made contributions to enable an improved urban water management, they are insufficient to allow for deeply understanding of the effectiveness of different RLs in UDS. Meanwhile, the risk of handing over the control process to a RL agent is still unavoidable because of the fluctuations of RLs' output and the unknown consequences of implementing RLs control strategy. This study conducted four tasks to address these problems. First, five RTC systems based on five individual RLs were designed to distinguish different RLs' performance in the context of UDS. Then, an independent security system based on SWMM was provided to forecast and evaluate the consequence of RL control strategy. After that, an innovative hybrid RTC system, called Voting, was developed by coupling multiple RLs and the independent security system through a model predictive control framework to avoid the fluctuations of RLs' output. Finally, the robustness of the RL agents was validated using uncertainty analysis. All the RLs were evaluated through simulation based on a Storm Water Management Model of a UDS located in Eastern China. According to the results, (a) different RLs show promise in CSO and flooding mitigation; (b) Voting selects a relatively reliable and optimal control trajectory compared with any single RL agents; (c) the performances of RL agents have certain robustness when facing different rainfall events and imperfect input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搁浅完成签到,获得积分10
刚刚
1秒前
橘子sungua发布了新的文献求助10
2秒前
jiang完成签到 ,获得积分10
3秒前
3秒前
3秒前
荒漠发布了新的文献求助10
4秒前
脑洞疼应助游舒平采纳,获得30
4秒前
陆千万发布了新的文献求助10
5秒前
芋泥蛋糕完成签到,获得积分10
5秒前
芋泥蛋糕发布了新的文献求助10
8秒前
10秒前
搜集达人应助豆乳采纳,获得10
11秒前
陆千万完成签到,获得积分10
11秒前
超帅连虎发布了新的文献求助30
12秒前
早茶可口发布了新的文献求助10
13秒前
quhayley应助独特的莫言采纳,获得10
13秒前
quhayley应助独特的莫言采纳,获得10
13秒前
13秒前
寒冬发布了新的文献求助10
15秒前
霖昭发布了新的文献求助10
18秒前
林志迎完成签到,获得积分10
19秒前
林士发布了新的文献求助10
19秒前
独特的莫言完成签到,获得积分10
21秒前
hecheng发布了新的文献求助10
22秒前
23秒前
高文强完成签到,获得积分10
23秒前
鲤鱼梦易完成签到,获得积分10
24秒前
情怀应助jxm采纳,获得10
25秒前
26秒前
无花果应助寒冬采纳,获得10
27秒前
当年明月发布了新的文献求助10
28秒前
豆乳发布了新的文献求助10
28秒前
早茶可口完成签到,获得积分10
30秒前
霖昭完成签到,获得积分10
30秒前
30秒前
刘可歆完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
乔乔兔发布了新的文献求助10
34秒前
jiang发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150