The effectively optical emission modulation in perovskite MAPbBr3 crystal by hot-electron transfer from metals

材料科学 电子 钙钛矿(结构) Crystal(编程语言) 光电子学 异质结 电子转移 等离子体子 带隙 化学 物理 结晶学 计算机科学 量子力学 有机化学 程序设计语言
作者
Yong Pan,Li Wang,Xueqiong Su,Dongwen Gao,Ruixiang Chen,Yan Zhang,Yuxin Zhao,Long Li,Dangli Gao
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:55 (37): 375104-375104 被引量:3
标识
DOI:10.1088/1361-6463/ac7d1e
摘要

Abstract Optical emission modulation is an effective way to improve material properties and to enlarge their applications. However, a significant problem still facing challenge is low efficiency in optical emission enhancement. To contribute this, this work aims to achieve efficient hot electron transfer resulting emission enhancement used the help of plasmon resonance near-field enhancement and combined with excitation energy. Thus, a simply method of metal-perovskite heterojunctions preparation was conducted. The optical crystal of Au nanoparticles/nanocages attached on perovskite MAPbBr 3 (NP-C) is presented. The hot electron transfer signal in ion’s vibration is characterized by XRD and Raman spectrum firstly. The cube shape and size distribution mostly in 550–850 nm morphology is revealed by SEM. The carrier concentration is improved about 37.5%, the mobility and resistivity are lowered around 53.2% and 26.7% after soaking in solution, respectively. What’s importantly, the effective modulation of intensity and peak position are achieved at room temperature, which is caused by the behavior of hot-electrons transfer suggested by FDTD simulation. The evidence for hot-electron transfer at the interface in Au–MAPbBr 3 in 150 fs are proved by transient absorption spectrum. Finally, the mechanism of optical modulation, band gap structure and hot electrons transfer are depicted. This paper can provide experimental reference for emission enhancement and the development of devices based on hot electrons transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的含羞草完成签到,获得积分10
1秒前
大个应助WZ0904采纳,获得10
2秒前
Sofia发布了新的文献求助60
5秒前
6秒前
橘子姐姐发布了新的文献求助10
7秒前
yanyan完成签到,获得积分10
8秒前
TT完成签到,获得积分10
9秒前
9秒前
了然完成签到 ,获得积分10
10秒前
jxp完成签到,获得积分10
10秒前
jojo完成签到 ,获得积分10
11秒前
11秒前
勤劳落雁完成签到 ,获得积分10
11秒前
14秒前
爆米花应助科研通管家采纳,获得30
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
赘婿应助Quzhengkai采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
调研昵称发布了新的文献求助10
16秒前
CodeCraft应助清新的苑博采纳,获得10
17秒前
所所应助Chen采纳,获得10
18秒前
20秒前
20秒前
goldenfleece发布了新的文献求助10
20秒前
怕黑的钥匙完成签到 ,获得积分10
20秒前
zhangsf88完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808