Deep-vision-based metabolic rate and clothing insulation estimation for occupant-centric control

热舒适性 控制(管理) 服装 估计 集合(抽象数据类型) 点(几何) 温度控制 模拟 计算机科学 代谢率 人工智能 工程类
作者
Haneul Choi,Bonghoon Jeong,Joosang Lee,Hooseung Na,Kyungmo Kang,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:: 109345-109345
标识
DOI:10.1016/j.buildenv.2022.109345
摘要

The metabolic rate (MET) and clothing insulation (CLO), which are personal characteristics, are generally difficult to estimate automatically. In recent years, a combination of deep learning and computer vision (hereafter referred to as “deep vision”) has enabled real-time estimation of these characteristics. Although many studies have been conducted on the topic, practical methods for simultaneous estimation of MET and CLO and building control strategies based on these characteristics have not been sufficiently examined. This study proposes a preliminary method for classifying two activities and two clothing ensembles along with a real-time estimation of MET and CLO. In addition, a comfort temperature control strategy based on MET and CLO in a purpose-built chamber is implemented. The proposed method estimated the activities and clothing ensembles of five subjects with an accuracy of 97%, and MET and CLO with an accuracy of 100% each in the hypothetical scenario. The comfort control successfully adjusted the set-point temperature of the air conditioner according to changes in MET and CLO. Moreover, the comfort control strategy maintained the thermal sensation votes of eight subjects constant irrespective of changes in MET and CLO, and the proportion of votes representing no thermal change increased by 17% compared to that of the fixed set-point control strategy. • Deep-vision-based MET and CLO estimation method was proposed. • MET and CLO were accurately and reliably estimated in a built environment. • Comfort control was implemented in the climate chamber considering MET and CLO. • Comfort control was effective in improving subjects' TSV and TP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangnakangna完成签到,获得积分10
刚刚
隐形曼青应助刘云采纳,获得10
1秒前
1秒前
wanci应助lx采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
小草完成签到,获得积分20
2秒前
正直的擎宇完成签到,获得积分10
2秒前
2秒前
慕青应助美好斓采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
陈雨完成签到,获得积分10
4秒前
zyf完成签到,获得积分20
4秒前
xiaotiyang完成签到,获得积分10
5秒前
YYH发布了新的文献求助10
5秒前
淡淡大山发布了新的文献求助10
5秒前
靡靡之音发布了新的文献求助10
5秒前
小鸭子发布了新的文献求助10
5秒前
难过的念梦关注了科研通微信公众号
6秒前
科研民工完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
whf发布了新的文献求助10
7秒前
7秒前
冷水鱼发布了新的文献求助10
7秒前
Aurora完成签到 ,获得积分10
7秒前
111发布了新的文献求助10
7秒前
8秒前
8秒前
酷波er应助正在采纳,获得10
8秒前
8秒前
晨初发布了新的文献求助10
8秒前
mingxuan完成签到,获得积分10
8秒前
冰点完成签到,获得积分10
9秒前
9秒前
ZMl发布了新的文献求助10
9秒前
9秒前
紫色哀伤完成签到,获得积分10
10秒前
having发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423