Deep-vision-based metabolic rate and clothing insulation estimation for occupant-centric control

热舒适性 控制(管理) 服装 估计 集合(抽象数据类型) 点(几何) 温度控制 模拟 计算机科学 代谢率 人工智能 工程类
作者
Haneul Choi,Bonghoon Jeong,Joosang Lee,Hooseung Na,Kyungmo Kang,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier BV]
卷期号:: 109345-109345
标识
DOI:10.1016/j.buildenv.2022.109345
摘要

The metabolic rate (MET) and clothing insulation (CLO), which are personal characteristics, are generally difficult to estimate automatically. In recent years, a combination of deep learning and computer vision (hereafter referred to as “deep vision”) has enabled real-time estimation of these characteristics. Although many studies have been conducted on the topic, practical methods for simultaneous estimation of MET and CLO and building control strategies based on these characteristics have not been sufficiently examined. This study proposes a preliminary method for classifying two activities and two clothing ensembles along with a real-time estimation of MET and CLO. In addition, a comfort temperature control strategy based on MET and CLO in a purpose-built chamber is implemented. The proposed method estimated the activities and clothing ensembles of five subjects with an accuracy of 97%, and MET and CLO with an accuracy of 100% each in the hypothetical scenario. The comfort control successfully adjusted the set-point temperature of the air conditioner according to changes in MET and CLO. Moreover, the comfort control strategy maintained the thermal sensation votes of eight subjects constant irrespective of changes in MET and CLO, and the proportion of votes representing no thermal change increased by 17% compared to that of the fixed set-point control strategy. • Deep-vision-based MET and CLO estimation method was proposed. • MET and CLO were accurately and reliably estimated in a built environment. • Comfort control was implemented in the climate chamber considering MET and CLO. • Comfort control was effective in improving subjects' TSV and TP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yunyii发布了新的文献求助10
2秒前
Fengkai_CHEN发布了新的文献求助30
5秒前
yangyl完成签到,获得积分10
7秒前
7秒前
7秒前
666应助CHENG采纳,获得10
8秒前
yangyl发布了新的文献求助10
9秒前
王二萌完成签到 ,获得积分10
13秒前
丰那个丰发布了新的文献求助10
13秒前
断章完成签到 ,获得积分10
14秒前
顾矜应助缥缈飞鸟采纳,获得10
16秒前
16秒前
彭于晏应助raincoats采纳,获得15
17秒前
打打应助科研探索者采纳,获得10
17秒前
小墨墨发布了新的文献求助30
17秒前
落后的盼秋完成签到,获得积分10
18秒前
大方元风完成签到 ,获得积分10
19秒前
听风完成签到,获得积分20
20秒前
科研鸟发布了新的文献求助10
22秒前
24秒前
情怀应助落寞银耳汤采纳,获得10
24秒前
XXXXX完成签到,获得积分10
24秒前
FrozNineTivus完成签到,获得积分10
27秒前
听风发布了新的文献求助10
27秒前
CipherSage应助念姬采纳,获得10
31秒前
腼腆的梦蕊完成签到 ,获得积分10
31秒前
Neuro_dan完成签到,获得积分0
31秒前
pluto应助熊猫文文采纳,获得10
33秒前
无情的水蓉完成签到,获得积分10
33秒前
34秒前
JamesPei应助丰那个丰采纳,获得10
35秒前
酷波er应助000采纳,获得10
35秒前
yangjian完成签到 ,获得积分10
35秒前
36秒前
傅勃霖发布了新的文献求助10
37秒前
苹果秋灵发布了新的文献求助10
40秒前
张雷应助22222采纳,获得30
40秒前
XLL小绿绿发布了新的文献求助10
40秒前
所所应助YYY采纳,获得10
41秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388