Deep-vision-based metabolic rate and clothing insulation estimation for occupant-centric control

热舒适性 控制(管理) 服装 估计 集合(抽象数据类型) 点(几何) 温度控制 模拟 计算机科学 代谢率 人工智能 工程类
作者
Haneul Choi,Bonghoon Jeong,Joosang Lee,Hooseung Na,Kyungmo Kang,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:: 109345-109345
标识
DOI:10.1016/j.buildenv.2022.109345
摘要

The metabolic rate (MET) and clothing insulation (CLO), which are personal characteristics, are generally difficult to estimate automatically. In recent years, a combination of deep learning and computer vision (hereafter referred to as “deep vision”) has enabled real-time estimation of these characteristics. Although many studies have been conducted on the topic, practical methods for simultaneous estimation of MET and CLO and building control strategies based on these characteristics have not been sufficiently examined. This study proposes a preliminary method for classifying two activities and two clothing ensembles along with a real-time estimation of MET and CLO. In addition, a comfort temperature control strategy based on MET and CLO in a purpose-built chamber is implemented. The proposed method estimated the activities and clothing ensembles of five subjects with an accuracy of 97%, and MET and CLO with an accuracy of 100% each in the hypothetical scenario. The comfort control successfully adjusted the set-point temperature of the air conditioner according to changes in MET and CLO. Moreover, the comfort control strategy maintained the thermal sensation votes of eight subjects constant irrespective of changes in MET and CLO, and the proportion of votes representing no thermal change increased by 17% compared to that of the fixed set-point control strategy. • Deep-vision-based MET and CLO estimation method was proposed. • MET and CLO were accurately and reliably estimated in a built environment. • Comfort control was implemented in the climate chamber considering MET and CLO. • Comfort control was effective in improving subjects' TSV and TP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
adi完成签到,获得积分10
刚刚
1秒前
外向樱发布了新的文献求助10
1秒前
1秒前
三岁应助小怪采纳,获得10
1秒前
ruirui_love发布了新的文献求助10
1秒前
1秒前
汉堡包应助junnuj采纳,获得10
2秒前
2秒前
3秒前
3秒前
yinyin发布了新的文献求助20
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
李爱国应助虚心沂采纳,获得10
5秒前
诸糜完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
脑洞疼应助natural采纳,获得10
7秒前
哈哈哈发布了新的文献求助10
8秒前
Owen应助外向樱采纳,获得10
8秒前
李小轩发布了新的文献求助10
8秒前
ziyue完成签到,获得积分10
8秒前
Murphy发布了新的文献求助10
8秒前
孤独的书雁完成签到,获得积分10
9秒前
KK发布了新的文献求助10
9秒前
9秒前
ziyue发布了新的文献求助10
11秒前
Xuan完成签到,获得积分10
11秒前
mx发布了新的文献求助10
11秒前
布袋完成签到,获得积分10
12秒前
12秒前
666完成签到,获得积分20
12秒前
虞不见王发布了新的文献求助20
12秒前
陌小千完成签到 ,获得积分10
12秒前
猪米妮发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624193
求助须知:如何正确求助?哪些是违规求助? 4710059
关于积分的说明 14949218
捐赠科研通 4778004
什么是DOI,文献DOI怎么找? 2553171
邀请新用户注册赠送积分活动 1515043
关于科研通互助平台的介绍 1475458