Deep-vision-based metabolic rate and clothing insulation estimation for occupant-centric control

热舒适性 控制(管理) 服装 估计 集合(抽象数据类型) 点(几何) 温度控制 模拟 计算机科学 代谢率 人工智能 工程类
作者
Haneul Choi,Bonghoon Jeong,Joosang Lee,Hooseung Na,Kyungmo Kang,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:: 109345-109345
标识
DOI:10.1016/j.buildenv.2022.109345
摘要

The metabolic rate (MET) and clothing insulation (CLO), which are personal characteristics, are generally difficult to estimate automatically. In recent years, a combination of deep learning and computer vision (hereafter referred to as “deep vision”) has enabled real-time estimation of these characteristics. Although many studies have been conducted on the topic, practical methods for simultaneous estimation of MET and CLO and building control strategies based on these characteristics have not been sufficiently examined. This study proposes a preliminary method for classifying two activities and two clothing ensembles along with a real-time estimation of MET and CLO. In addition, a comfort temperature control strategy based on MET and CLO in a purpose-built chamber is implemented. The proposed method estimated the activities and clothing ensembles of five subjects with an accuracy of 97%, and MET and CLO with an accuracy of 100% each in the hypothetical scenario. The comfort control successfully adjusted the set-point temperature of the air conditioner according to changes in MET and CLO. Moreover, the comfort control strategy maintained the thermal sensation votes of eight subjects constant irrespective of changes in MET and CLO, and the proportion of votes representing no thermal change increased by 17% compared to that of the fixed set-point control strategy. • Deep-vision-based MET and CLO estimation method was proposed. • MET and CLO were accurately and reliably estimated in a built environment. • Comfort control was implemented in the climate chamber considering MET and CLO. • Comfort control was effective in improving subjects' TSV and TP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
csy发布了新的文献求助30
刚刚
雨淋沐风完成签到,获得积分10
刚刚
安宁关注了科研通微信公众号
1秒前
1秒前
2秒前
liyi2022完成签到,获得积分10
2秒前
kaka完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Mississippiecho完成签到,获得积分10
6秒前
ardejiang发布了新的文献求助10
6秒前
吴帆完成签到,获得积分10
6秒前
呆崽发布了新的文献求助10
7秒前
Mango完成签到 ,获得积分10
7秒前
科研通AI2S应助Yt采纳,获得10
8秒前
胖心怡完成签到,获得积分10
8秒前
快乐应助jhhh采纳,获得10
8秒前
9秒前
高大的迎梦完成签到,获得积分10
9秒前
知性的绮兰完成签到,获得积分10
9秒前
可可萝oxo发布了新的文献求助10
9秒前
加加油完成签到,获得积分10
9秒前
搞怪莫茗发布了新的文献求助10
9秒前
9秒前
SHIJIE发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
蟹堡王的秘方完成签到,获得积分10
13秒前
在逃安琪完成签到,获得积分10
13秒前
玫瑰星云完成签到,获得积分10
13秒前
hotcas完成签到,获得积分10
13秒前
14秒前
英姑应助jimmyk采纳,获得10
15秒前
sword完成签到,获得积分10
15秒前
flb123完成签到,获得积分10
15秒前
Kk完成签到,获得积分10
16秒前
16秒前
Hello应助xiaowanzi采纳,获得10
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012