Machine learning directed discrimination of virgin and recycled poly(ethylene terephthalate) based on non-targeted analysis of volatile organic compounds

瓶子 随机森林 支持向量机 聚乙烯 乙烯 人工智能 计算机科学 环境科学 机器学习 材料科学 工艺工程 化学 复合材料 工程类 有机化学 催化作用
作者
Hanke Li,Xuefeng Wu,Siliang Wu,Lichang Chen,Xiaoxue Kou,Ying Zeng,Dan Li,Qin‐Bao Lin,Huai‐Ning Zhong,Tian-Ying Hao,Ben Dong,Sheng Chen,Jianguo Zheng
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:436: 129116-129116 被引量:25
标识
DOI:10.1016/j.jhazmat.2022.129116
摘要

The use of non-decontaminated recycled poly(ethylene terephthalate) (PET) in food packages arouses consumer safety concerns, and thus is a major obstacle hindering PET bottle-to-bottle recycling in many developing regions. Herein, machine learning (ML) algorithms were employed for the discrimination of 127 batches of virgin PET and recycled PET (rPET) samples based on 1247 volatile organic compounds (VOCs) tentatively identified by headspace solid-phase microextraction comprehensive two-dimensional gas chromatography quadrupole-time-of-flight mass spectrometry. 100% prediction accuracy was achieved for PET discrimination using random forest (RF) and support vector machine (SVM) algorithms. The features of VOCs bearing high variable contributions to the RF prediction performance characterized by mean decrease Gini and variable importance were summarized as high occurrence rate, dominant appearance and distinct instrument response. Further, RF and SVM were employed for PET discrimination using the simplified input datasets composed of 62 VOCs with the highest contributions to the RF prediction performance derived by the AUCRF algorithm, by which over 99% prediction accuracy was achieved. Our results demonstrated ML algorithms were reliable and powerful to address PET adulteration and were beneficial to boost food-contact applications of rPET bottles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hang完成签到,获得积分10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
GingerF应助ckk采纳,获得50
刚刚
Owen应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
111发布了新的文献求助20
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
1秒前
1秒前
影子芳香发布了新的文献求助10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Lny应助lchoxy采纳,获得10
1秒前
魔幻大叔完成签到,获得积分10
2秒前
三毛发布了新的文献求助10
2秒前
大宝剑3号完成签到 ,获得积分10
2秒前
小猴子完成签到,获得积分10
3秒前
慈祥的花瓣完成签到,获得积分10
3秒前
清秀苗条发布了新的文献求助10
3秒前
4秒前
4秒前
缥缈蓉完成签到,获得积分10
4秒前
萱儿完成签到,获得积分10
4秒前
汪汪芊蕙发布了新的文献求助10
4秒前
4秒前
4秒前
light完成签到,获得积分10
5秒前
斯文冷亦完成签到 ,获得积分10
5秒前
清脆语海完成签到,获得积分10
5秒前
Fa完成签到,获得积分10
6秒前
科研搞起来完成签到,获得积分10
6秒前
江漓完成签到 ,获得积分10
6秒前
zhn0607完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849