Machine learning directed discrimination of virgin and recycled poly(ethylene terephthalate) based on non-targeted analysis of volatile organic compounds

瓶子 随机森林 支持向量机 聚乙烯 乙烯 人工智能 计算机科学 环境科学 机器学习 材料科学 化学 复合材料 有机化学 催化作用
作者
Hanke Li,Xuefeng Wu,Siliang Wu,Lichang Chen,Xiaoxue Kou,Ying Zeng,Dan Li,Qin‐Bao Lin,Hao Zhong,Tian-Ying Hao,Ben Dong,Sheng Chen,Jianguo Zheng
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:436: 129116-129116 被引量:8
标识
DOI:10.1016/j.jhazmat.2022.129116
摘要

The use of non-decontaminated recycled poly(ethylene terephthalate) (PET) in food packages arouses consumer safety concerns, and thus is a major obstacle hindering PET bottle-to-bottle recycling in many developing regions. Herein, machine learning (ML) algorithms were employed for the discrimination of 127 batches of virgin PET and recycled PET (rPET) samples based on 1247 volatile organic compounds (VOCs) tentatively identified by headspace solid-phase microextraction comprehensive two-dimensional gas chromatography quadrupole-time-of-flight mass spectrometry. 100% prediction accuracy was achieved for PET discrimination using random forest (RF) and support vector machine (SVM) algorithms. The features of VOCs bearing high variable contributions to the RF prediction performance characterized by mean decrease Gini and variable importance were summarized as high occurrence rate, dominant appearance and distinct instrument response. Further, RF and SVM were employed for PET discrimination using the simplified input datasets composed of 62 VOCs with the highest contributions to the RF prediction performance derived by the AUCRF algorithm, by which over 99% prediction accuracy was achieved. Our results demonstrated ML algorithms were reliable and powerful to address PET adulteration and were beneficial to boost food-contact applications of rPET bottles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUU发布了新的文献求助10
刚刚
zhh发布了新的文献求助10
1秒前
xyj完成签到,获得积分10
1秒前
1秒前
Ultraman完成签到,获得积分10
2秒前
可爱的函函应助罗氏集团采纳,获得10
3秒前
4秒前
4秒前
dongan发布了新的文献求助10
4秒前
念心发布了新的文献求助10
5秒前
战战兢兢完成签到 ,获得积分10
6秒前
Clark完成签到,获得积分10
6秒前
Mini33完成签到,获得积分10
6秒前
慕青应助XiaodongWang采纳,获得10
7秒前
领导范儿应助XiaodongWang采纳,获得10
7秒前
鸣笛应助XiaodongWang采纳,获得10
7秒前
Cyzou完成签到,获得积分10
8秒前
小二发布了新的文献求助10
8秒前
叶子发布了新的文献求助10
9秒前
赘婿应助HUU采纳,获得10
9秒前
搜集达人应助罗氏集团采纳,获得10
9秒前
11秒前
11秒前
Nemo完成签到 ,获得积分10
12秒前
Rondab应助山海树灵采纳,获得10
13秒前
skylinewjw完成签到,获得积分20
13秒前
团结紧张严肃活泼完成签到,获得积分10
14秒前
加油发布了新的文献求助10
15秒前
15秒前
汉堡包应助无辜的白秋采纳,获得10
16秒前
思源应助罗氏集团采纳,获得10
16秒前
科研通AI5应助叶子采纳,获得10
17秒前
田様应助新手鼓手采纳,获得10
18秒前
无奈的晴发布了新的文献求助10
19秒前
怕孤独的鹭洋完成签到,获得积分10
20秒前
UUU发布了新的文献求助100
20秒前
20秒前
牙瓜完成签到 ,获得积分10
20秒前
zhuyy完成签到,获得积分10
21秒前
ljz完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070