Machine learning directed discrimination of virgin and recycled poly(ethylene terephthalate) based on non-targeted analysis of volatile organic compounds

瓶子 随机森林 支持向量机 聚乙烯 乙烯 人工智能 计算机科学 环境科学 机器学习 材料科学 工艺工程 化学 复合材料 工程类 有机化学 催化作用
作者
Hanke Li,Xuefeng Wu,Siliang Wu,Lichang Chen,Xiaoxue Kou,Ying Zeng,Dan Li,Qin‐Bao Lin,Huai‐Ning Zhong,Tian-Ying Hao,Ben Dong,Sheng Chen,Jianguo Zheng
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:436: 129116-129116 被引量:25
标识
DOI:10.1016/j.jhazmat.2022.129116
摘要

The use of non-decontaminated recycled poly(ethylene terephthalate) (PET) in food packages arouses consumer safety concerns, and thus is a major obstacle hindering PET bottle-to-bottle recycling in many developing regions. Herein, machine learning (ML) algorithms were employed for the discrimination of 127 batches of virgin PET and recycled PET (rPET) samples based on 1247 volatile organic compounds (VOCs) tentatively identified by headspace solid-phase microextraction comprehensive two-dimensional gas chromatography quadrupole-time-of-flight mass spectrometry. 100% prediction accuracy was achieved for PET discrimination using random forest (RF) and support vector machine (SVM) algorithms. The features of VOCs bearing high variable contributions to the RF prediction performance characterized by mean decrease Gini and variable importance were summarized as high occurrence rate, dominant appearance and distinct instrument response. Further, RF and SVM were employed for PET discrimination using the simplified input datasets composed of 62 VOCs with the highest contributions to the RF prediction performance derived by the AUCRF algorithm, by which over 99% prediction accuracy was achieved. Our results demonstrated ML algorithms were reliable and powerful to address PET adulteration and were beneficial to boost food-contact applications of rPET bottles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
www发布了新的文献求助10
2秒前
华仔应助Vv采纳,获得10
2秒前
似锦发布了新的文献求助20
2秒前
香蕉觅云应助唠叨的又菡采纳,获得10
4秒前
蔡以静完成签到,获得积分10
5秒前
承一发布了新的文献求助10
5秒前
科研科发布了新的文献求助30
5秒前
科研通AI6应助MC番薯采纳,获得10
6秒前
七里香发布了新的文献求助10
6秒前
Dr.Wang发布了新的文献求助10
6秒前
6秒前
miaomiao完成签到,获得积分10
7秒前
魁梧的曼易完成签到,获得积分10
7秒前
www完成签到 ,获得积分10
9秒前
lin发布了新的文献求助60
10秒前
香蕉觅云应助Dr.Wang采纳,获得10
11秒前
11秒前
14秒前
21_xxrr完成签到,获得积分10
16秒前
和谐青柏发布了新的文献求助10
16秒前
吴先生完成签到 ,获得积分10
17秒前
17秒前
hsyssb发布了新的文献求助150
18秒前
18秒前
langping完成签到,获得积分10
18秒前
18秒前
侯侯完成签到,获得积分10
19秒前
21秒前
Bminor完成签到,获得积分10
21秒前
22秒前
22秒前
吴先生关注了科研通微信公众号
22秒前
gzwhh发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
czz发布了新的文献求助10
23秒前
Kongkong发布了新的文献求助10
23秒前
25秒前
科研通AI6应助fengmian采纳,获得10
25秒前
科研科完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501