Breaking the Scaling Relationship Limit: From Single-Atom to Dual-Atom Catalysts

Atom(片上系统) 缩放比例 对偶(语法数字) 活动站点 催化作用 吸附 化学 极限(数学) 金属 选择性 反应速率 化学物理 纳米技术 组合化学 材料科学 物理化学 计算机科学 有机化学 数学 艺术 数学分析 几何学 文学类 嵌入式系统
作者
Longbin Li,Kai Yuan,Yiwang Chen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (6): 584-596 被引量:183
标识
DOI:10.1021/accountsmr.1c00264
摘要

ConspectusRecent decades have witnessed the rapid development of catalytic science, especially after Taylor and Armstrong proposed the notion of the "active site" in 1925. By optimizing reaction paths and reducing the activation energies of reactions, catalysts appear in more than 90% of chemical production reactions, involving homogeneous catalysis, heterogeneous catalysis, and enzyme catalysis. Because of the 100% efficiency of active atom utilization and the adjustable microenvironment of metal centers, single-atom catalysts (SACs) shine in various catalytic fields for enhancing the rate, conversion, and selectivity of chemical reactions. Nevertheless, a solo active site determines a fixed adsorption mode, and the adsorption energies of intermediates from multistep reactions linking with a solo metal site are related to each other. For a specific multistep reaction, it is almost impossible to optimally adjust the adsorption of every intermediate on the solo site simultaneously. This phenomenon is termed the scaling relationship limit (SRL) and is an unavoidable obstacle in the development of pure SACs.Dual-atom catalysts (DACs), perfectly inheriting the advantages of SACs, can exhibit better catalytic performance than simple SACs and thus have gradually gained researchers' attention. Depending on the dual-metal structure, dual-metal sites (DMSs) in DACs can be divided into two separated heterometal sites, two linked homometal sites, and two linked heterometal sites. Two separated heterometal sites prescribe a distance limit between two metal sites for electron interaction. Currently, the active origins of DACs can be summarized in the following three points: (1) electronic effect, in which only one metal center serves as active site and the other plays an electronic regulatory role; (2) synergistic effect, in which two metal centers separately catalyze different core steps to improve catalytic performance together; (3) adsorption effect, in which offering additional sites changes the adsorption structures to break the SRL based on SACs. Among the three active origins, optimizing the adsorption structure of intermediates upon DMSs is one of the most effective technologies to boost the catalytic property of DACs on the basis of SACs. To date, few contributions have focused on the development of DACs in various heterogeneous catalysis environments, including O2 reduction reaction, O2 evolution reaction, H2 evolution reaction, CO2 reduction reaction, N2 reduction reaction, and other conversion reactions.In this Account, a summary of recent progress regarding DACs in heterogeneous catalysis will be presented. First, the evolution of DACs from an unpopular discovery to research hot spot is illustrated through a timeline. In the next section, the DACs are divided into three categories, and the potential active origins of DACs are revealed by comparison with SACs. In addition, the techniques for constructing DACs are systematically summarized, including preparation of carbonous, pyrolysis-free, noncarbon-supported, and complex-type DACs. Furthermore, the underlying active origins of DACs in specific energy- and environment-related reactions are introduced in detail with assistance of theoretical calculations. Finally, we affirm the contribution of DACs to catalysis, particularly heterogeneous electrocatalysis, and provide an outlook regarding the development direction for DACs by discussing the major challenges. It is anticipated that this Account can inspire researchers to propel the advance of DACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常安完成签到,获得积分10
刚刚
刚刚
Famiglistmo完成签到,获得积分10
刚刚
小二郎应助Lee采纳,获得10
刚刚
1秒前
空心椰子完成签到,获得积分10
1秒前
搜集达人应助香蕉八宝粥采纳,获得10
3秒前
科目三应助helppppp采纳,获得10
4秒前
5秒前
5秒前
丘比特应助淡然太清采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
舒适静丹发布了新的文献求助10
6秒前
研友_pLw6o8发布了新的文献求助10
7秒前
8秒前
9秒前
Owen应助程意善采纳,获得10
10秒前
puutteita发布了新的文献求助10
10秒前
安南应助qia采纳,获得10
11秒前
11秒前
科研小白发布了新的文献求助10
12秒前
13秒前
只谈风月举报Qiqi求助涉嫌违规
13秒前
无花果应助王艺霖采纳,获得10
14秒前
杨方莉关注了科研通微信公众号
14秒前
15秒前
16秒前
16秒前
藿藿完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
火星上曼冬完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助150
18秒前
周周完成签到 ,获得积分10
18秒前
盼芙发布了新的文献求助10
19秒前
大个应助舒适静丹采纳,获得10
19秒前
Zhang完成签到 ,获得积分10
20秒前
鱼七完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154