生命银行
匹配(统计)
人类连接体项目
计算机科学
比例(比率)
表型
连接体
差异(会计)
神经影像学
荟萃分析
机器学习
预测建模
利用
简单(哲学)
人工智能
数据挖掘
统计
神经科学
功能连接
生物信息学
生物
数学
医学
生物化学
认识论
会计
计算机安全
基因
内科学
业务
哲学
量子力学
物理
作者
Tong He,Lijun An,Pansheng Chen,Jianzhong Chen,Jiashi Feng,Danilo Bzdok,Avram J. Holmes,Simon B. Eickhoff,B.T. Thomas Yeo
标识
DOI:10.1038/s41593-022-01059-9
摘要
We propose a simple framework-meta-matching-to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in small-scale studies. The key consideration is that a unique phenotype from a boutique study likely correlates with (but is not the same as) related phenotypes in some large-scale dataset. Meta-matching exploits these correlations to boost prediction in the boutique study. We apply meta-matching to predict non-brain-imaging phenotypes from resting-state functional connectivity. Using the UK Biobank (N = 36,848) and Human Connectome Project (HCP) (N = 1,019) datasets, we demonstrate that meta-matching can greatly boost the prediction of new phenotypes in small independent datasets in many scenarios. For example, translating a UK Biobank model to 100 HCP participants yields an eight-fold improvement in variance explained with an average absolute gain of 4.0% (minimum = -0.2%, maximum = 16.0%) across 35 phenotypes. With a growing number of large-scale datasets collecting increasingly diverse phenotypes, our results represent a lower bound on the potential of meta-matching.
科研通智能强力驱动
Strongly Powered by AbleSci AI