Microscopic-Level Insights into the Mechanism of Enhanced NH3 Synthesis in Plasma-Enabled Cascade N2 Oxidation–Electroreduction System

化学 电合成 氮氧化物 纳米颗粒 无机化学 电化学 化学工程 有机化学 物理化学 燃烧 电极 工程类
作者
Yongwen Ren,Chang Yu,Linshan Wang,Xinyi Tan,Zhao Wang,Qianbing Wei,Yafang Zhang,Jieshan Qiu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (23): 10193-10200 被引量:119
标识
DOI:10.1021/jacs.2c00089
摘要

Integrated/cascade plasma-enabled N2 oxidation and electrocatalytic NOx– (where x = 2, 3) reduction reaction (pNOR-eNOx–RR) holds great promise for the renewable synthesis of ammonia (NH3). However, the corresponding activated effects and process of plasma toward N2 and O2 molecules and the mechanism of eNOx–RR to NH3 are unclear and need to be further uncovered, which largely limits the large-scale deployment of this process integration technology. Herein, we systematically investigate the plasma-enabled activation and recombination processes of N2 and O2 molecules, and more meaningfully, the mechanism of eNOx–RR at a microscopic level is also decoupled using copper (Cu) nanoparticles as a representative electrocatalyst. The concentration of produced NOx in the pNOR system is confirmed as a function of the length for spark discharge as well as the volumetric ratio for N2 and O2 feeding gas. The successive protonation process of NOx– and the key N-containing intermediates (e.g., −NH2) of eNOx–RR are detected with in situ infrared spectroscopy. Besides, in situ Raman spectroscopy further reveals the dynamic reconstruction process of Cu nanoparticles during the eNOx–RR process. The Cu nanoparticle-driven pNOR-eNOx–RR system can finally achieve a high NH3 yield rate of ∼40 nmol s–1 cm–2 and Faradaic efficiency of nearly 90%, overperforming the benchmarks reported in the literature. It is anticipated that this work will stimulate the practical development of the pNOR-eNOx–RR system for the green electrosynthesis of NH3 directly from air and water under ambient conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半山完成签到,获得积分10
2秒前
吹泡泡的红豆完成签到 ,获得积分10
3秒前
研友_89eBO8完成签到 ,获得积分10
3秒前
隐形曼青应助ZeJ采纳,获得10
3秒前
3秒前
隐形曼青应助温暖的钻石采纳,获得10
4秒前
Khr1stINK发布了新的文献求助10
5秒前
123cxj发布了新的文献求助10
6秒前
星辰大海应助红红采纳,获得10
6秒前
sweetbearm应助小周采纳,获得10
7秒前
科研通AI5应助赖道之采纳,获得10
7秒前
8秒前
HonamC完成签到,获得积分10
9秒前
十三十四十五完成签到,获得积分10
10秒前
潇洒的问夏完成签到 ,获得积分10
12秒前
无声瀑布完成签到,获得积分10
12秒前
Bingtao_Lian完成签到 ,获得积分10
13秒前
小布丁完成签到 ,获得积分10
13秒前
竹筏过海应助季生采纳,获得30
14秒前
15秒前
buno应助22采纳,获得10
16秒前
赘婿应助TT采纳,获得10
17秒前
17秒前
17秒前
18秒前
Jenny应助赖道之采纳,获得10
20秒前
依古比古完成签到 ,获得积分10
22秒前
汎影发布了新的文献求助10
22秒前
小二完成签到,获得积分10
22秒前
23秒前
25秒前
顾矜应助长情洙采纳,获得10
25秒前
monere发布了新的文献求助30
25秒前
Xiaoxiao应助汉关采纳,获得10
27秒前
27秒前
汎影完成签到,获得积分10
28秒前
29秒前
Chen发布了新的文献求助10
31秒前
WW完成签到,获得积分10
31秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808