火用反应
催化作用
光化学
镍
铱
化学
光敏剂
电子转移
质子耦合电子转移
材料科学
有机化学
作者
Rajesh Kancherla,Krishnamoorthy Muralirajan,Bholanath Maity,Safakath Karuthedath,G. Sathish Kumar,Frédéric Laquai,Luigi Cavallo,Magnus Rueping
标识
DOI:10.1038/s41467-022-30278-8
摘要
Various methods that use a photocatalyst for electron transfer between an organic substrate and a transition metal catalyst have been established. While triplet sensitization of organic substrates via energy transfer from photocatalysts has been demonstrated, the sensitization of transition metal catalysts is still in its infancy. Here, we describe the selective alkylation of C(sp3)-H bonds via triplet sensitization of nickel catalytic intermediates with a thorough elucidation of its reaction mechanism. Exergonic Dexter energy transfer from an iridium photosensitizer promotes the nickel catalyst to the triplet state, thus enabling C-H functionalization via the release of bromine radical. Computational studies and transient absorption experiments support that the reaction proceeds via the formation of triplet states of the organometallic nickel catalyst by energy transfer.
科研通智能强力驱动
Strongly Powered by AbleSci AI