Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis

医学 卷积神经网络 深度学习 人工智能 放射科 灵敏度(控制系统) 模态(人机交互) 人口 机器学习 计算机科学 电子工程 环境卫生 工程类
作者
Saeed Abdollahifard,Amirmohammad Farrokhi,Fatemeh Kheshti,Mahtab Jalali,Ashkan Mowla
出处
期刊:Interventional Neuroradiology [SAGE Publishing]
卷期号:29 (6): 738-747 被引量:4
标识
DOI:10.1177/15910199221097475
摘要

Introduction Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. Methods Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. Results Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2–93/2%) and specificity of 94/6% (CI: 0/914–0/966). CTA was the most sensitive modality (92.0%(CI:85/2–95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians’ sensitivity increased to 12/8% and interrater agreement to 0/193. Conclusion CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亢kxh完成签到,获得积分10
刚刚
hjx完成签到,获得积分10
1秒前
Chany发布了新的文献求助10
1秒前
thunder完成签到,获得积分10
2秒前
2秒前
666发布了新的文献求助10
3秒前
顾矜应助糯米饭采纳,获得20
3秒前
细心的荧荧完成签到 ,获得积分10
3秒前
桑晒包完成签到,获得积分10
3秒前
hcai55完成签到,获得积分10
4秒前
pp发布了新的文献求助10
4秒前
geeee完成签到,获得积分10
4秒前
4秒前
4秒前
Ava应助Shawn采纳,获得10
4秒前
鱿鱼完成签到,获得积分10
5秒前
大模型应助神勇的天问采纳,获得10
5秒前
李至安发布了新的文献求助10
5秒前
正己化人应助momo采纳,获得10
5秒前
5秒前
科研通AI6应助乐观的海采纳,获得10
5秒前
5秒前
yu完成签到 ,获得积分10
6秒前
Jasper应助老张采纳,获得10
6秒前
小石头完成签到,获得积分10
6秒前
6秒前
王泽发布了新的文献求助10
6秒前
搜集达人应助小王爱学习采纳,获得10
6秒前
xdc发布了新的文献求助10
7秒前
147258完成签到,获得积分10
7秒前
7秒前
闪闪的觅云完成签到,获得积分10
8秒前
Sukey完成签到,获得积分10
8秒前
SUKAILIMAI发布了新的文献求助10
8秒前
Survive完成签到,获得积分10
8秒前
9秒前
波波发布了新的文献求助10
9秒前
Sakura应助潮汐采纳,获得10
9秒前
DE发布了新的文献求助10
9秒前
小阿绿完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415