Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis

医学 卷积神经网络 深度学习 人工智能 放射科 灵敏度(控制系统) 模态(人机交互) 人口 机器学习 计算机科学 电子工程 环境卫生 工程类
作者
Saeed Abdollahifard,Amirmohammad Farrokhi,Fatemeh Kheshti,Mahtab Jalali,Ashkan Mowla
出处
期刊:Interventional Neuroradiology [SAGE]
卷期号:29 (6): 738-747 被引量:4
标识
DOI:10.1177/15910199221097475
摘要

Introduction Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. Methods Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. Results Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2–93/2%) and specificity of 94/6% (CI: 0/914–0/966). CTA was the most sensitive modality (92.0%(CI:85/2–95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians’ sensitivity increased to 12/8% and interrater agreement to 0/193. Conclusion CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一丢丢完成签到,获得积分10
1秒前
科研通AI6应助好好书童采纳,获得10
2秒前
2秒前
www完成签到,获得积分10
2秒前
胖胖胖胖完成签到,获得积分10
2秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
认真的战斗机完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
FoxLY完成签到,获得积分10
5秒前
mark完成签到,获得积分10
5秒前
zhuboujs完成签到,获得积分10
5秒前
bkagyin应助酷酷幼旋采纳,获得10
6秒前
www发布了新的文献求助10
6秒前
张好人完成签到,获得积分10
6秒前
笑点低的小霜完成签到 ,获得积分10
6秒前
伍次友发布了新的文献求助10
6秒前
曹梓聪完成签到,获得积分10
7秒前
bkagyin应助种烟草的狗大户采纳,获得10
8秒前
121发布了新的文献求助10
9秒前
9秒前
9秒前
Chen完成签到 ,获得积分10
9秒前
烟花应助安详的惜梦采纳,获得10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434254
求助须知:如何正确求助?哪些是违规求助? 4546529
关于积分的说明 14202959
捐赠科研通 4466464
什么是DOI,文献DOI怎么找? 2448165
邀请新用户注册赠送积分活动 1439046
关于科研通互助平台的介绍 1415945