已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis

医学 卷积神经网络 深度学习 人工智能 放射科 灵敏度(控制系统) 模态(人机交互) 人口 机器学习 计算机科学 电子工程 环境卫生 工程类
作者
Saeed Abdollahifard,Amirmohammad Farrokhi,Fatemeh Kheshti,Mahtab Jalali,Ashkan Mowla
出处
期刊:Interventional Neuroradiology [SAGE]
卷期号:29 (6): 738-747 被引量:4
标识
DOI:10.1177/15910199221097475
摘要

Introduction Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. Methods Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. Results Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2–93/2%) and specificity of 94/6% (CI: 0/914–0/966). CTA was the most sensitive modality (92.0%(CI:85/2–95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians’ sensitivity increased to 12/8% and interrater agreement to 0/193. Conclusion CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北克完成签到 ,获得积分10
1秒前
1秒前
可爱安白完成签到,获得积分10
1秒前
Leon Lai完成签到,获得积分10
1秒前
泡泡完成签到 ,获得积分10
1秒前
qqq完成签到,获得积分10
1秒前
fang完成签到 ,获得积分0
3秒前
郭郭完成签到 ,获得积分10
4秒前
无花果应助俊逸夜阑采纳,获得10
4秒前
ccc发布了新的文献求助10
4秒前
mbq完成签到,获得积分10
4秒前
朴实山兰完成签到 ,获得积分10
4秒前
科研狗完成签到,获得积分10
5秒前
脑子不转弯完成签到 ,获得积分10
7秒前
认真的寒香完成签到,获得积分10
7秒前
12完成签到 ,获得积分10
7秒前
9秒前
9秒前
9秒前
大模型应助Bi8bo采纳,获得10
11秒前
环走鱼尾纹完成签到 ,获得积分10
11秒前
xiaohei完成签到,获得积分10
13秒前
传奇3应助钰L采纳,获得10
14秒前
任小萱完成签到,获得积分10
14秒前
初昀杭完成签到 ,获得积分10
15秒前
hhhhh完成签到 ,获得积分10
15秒前
默笙完成签到 ,获得积分10
15秒前
16秒前
李健的小迷弟应助ZLN666采纳,获得10
16秒前
zzzrrr完成签到 ,获得积分10
17秒前
正在努力的学术小垃圾完成签到 ,获得积分10
17秒前
脑洞疼应助fduqyy采纳,获得10
17秒前
無端完成签到 ,获得积分10
18秒前
18秒前
可靠诗筠完成签到 ,获得积分10
18秒前
19秒前
qian完成签到 ,获得积分10
20秒前
俊逸夜阑发布了新的文献求助10
20秒前
L2951完成签到,获得积分10
21秒前
时代更迭完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502