Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis

医学 卷积神经网络 深度学习 人工智能 放射科 灵敏度(控制系统) 模态(人机交互) 人口 机器学习 计算机科学 环境卫生 电子工程 工程类
作者
Saeed Abdollahifard,Amirmohammad Farrokhi,Fatemeh Kheshti,Mahtab Jalali,Ashkan Mowla
出处
期刊:Interventional Neuroradiology [SAGE]
卷期号:29 (6): 738-747 被引量:4
标识
DOI:10.1177/15910199221097475
摘要

Introduction Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. Methods Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. Results Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2–93/2%) and specificity of 94/6% (CI: 0/914–0/966). CTA was the most sensitive modality (92.0%(CI:85/2–95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians’ sensitivity increased to 12/8% and interrater agreement to 0/193. Conclusion CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林不会数学完成签到,获得积分10
刚刚
开心听露发布了新的文献求助10
刚刚
PDIF-CN2完成签到,获得积分10
1秒前
Orange应助孟孟采纳,获得10
2秒前
4秒前
舒心的雨双完成签到,获得积分10
4秒前
符百川发布了新的文献求助10
4秒前
顺利毕业发布了新的文献求助10
5秒前
调研昵称发布了新的文献求助10
5秒前
舒适的藏花完成签到 ,获得积分10
6秒前
skycrygg完成签到,获得积分10
8秒前
在水一方应助nanonamo采纳,获得10
9秒前
析界成微发布了新的文献求助10
10秒前
10秒前
酷波er应助开心听露采纳,获得10
11秒前
大头完成签到,获得积分10
12秒前
12秒前
13秒前
一昂杨发布了新的文献求助10
14秒前
舒心怀绿关注了科研通微信公众号
15秒前
Ava应助早睡早起采纳,获得10
15秒前
ccm应助动听紫文采纳,获得30
16秒前
英姑应助十月采纳,获得10
16秒前
暴躁的萃发布了新的文献求助10
17秒前
chenwang发布了新的文献求助10
17秒前
开心听露完成签到,获得积分10
18秒前
zqingxia完成签到,获得积分10
18秒前
符百川完成签到,获得积分10
19秒前
20秒前
。。。。。。完成签到,获得积分10
20秒前
20秒前
wang1234发布了新的文献求助10
21秒前
CZJ完成签到,获得积分10
22秒前
千亦完成签到,获得积分10
22秒前
科研毛毛虫完成签到,获得积分10
23秒前
皮皮虾发布了新的文献求助10
23秒前
拾一完成签到,获得积分10
23秒前
哒哒哒完成签到,获得积分10
24秒前
25秒前
舒心怀绿发布了新的文献求助10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046