Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis

医学 卷积神经网络 深度学习 人工智能 放射科 灵敏度(控制系统) 模态(人机交互) 人口 机器学习 计算机科学 电子工程 环境卫生 工程类
作者
Saeed Abdollahifard,Amirmohammad Farrokhi,Fatemeh Kheshti,Mahtab Jalali,Ashkan Mowla
出处
期刊:Interventional Neuroradiology [SAGE Publishing]
卷期号:29 (6): 738-747 被引量:4
标识
DOI:10.1177/15910199221097475
摘要

Introduction Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. Methods Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. Results Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2–93/2%) and specificity of 94/6% (CI: 0/914–0/966). CTA was the most sensitive modality (92.0%(CI:85/2–95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians’ sensitivity increased to 12/8% and interrater agreement to 0/193. Conclusion CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洋洋完成签到,获得积分10
1秒前
代怡发布了新的文献求助10
2秒前
coco发布了新的文献求助10
2秒前
xxb要发sci完成签到,获得积分10
2秒前
wy发布了新的文献求助10
2秒前
英俊的铭应助啦啦啦采纳,获得10
3秒前
3秒前
老刀发布了新的文献求助30
3秒前
zzzz发布了新的文献求助10
3秒前
有魅力的傲松关注了科研通微信公众号
3秒前
4秒前
5秒前
老福贵儿应助ZHAOyifan采纳,获得30
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
LS发布了新的文献求助20
8秒前
温柔柜子应助ceeray23采纳,获得30
8秒前
linghanlan完成签到,获得积分10
9秒前
feb发布了新的文献求助10
9秒前
陈牛逼完成签到 ,获得积分10
9秒前
子新发布了新的文献求助10
10秒前
酷波er应助谷蓝采纳,获得10
10秒前
金金完成签到,获得积分10
10秒前
领导范儿应助多情嘉懿采纳,获得10
11秒前
12秒前
丸橙发布了新的文献求助10
12秒前
传奇3应助wy采纳,获得10
12秒前
852应助炙热晓露采纳,获得10
12秒前
潮鸣完成签到 ,获得积分10
13秒前
啦啦啦完成签到,获得积分20
13秒前
gzh关闭了gzh文献求助
13秒前
13秒前
14秒前
15秒前
柯凌完成签到 ,获得积分20
15秒前
15秒前
16秒前
八九完成签到,获得积分20
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661