Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis

医学 卷积神经网络 深度学习 人工智能 放射科 灵敏度(控制系统) 模态(人机交互) 人口 机器学习 计算机科学 电子工程 环境卫生 工程类
作者
Saeed Abdollahifard,Amirmohammad Farrokhi,Fatemeh Kheshti,Mahtab Jalali,Ashkan Mowla
出处
期刊:Interventional Neuroradiology [SAGE Publishing]
卷期号:29 (6): 738-747 被引量:4
标识
DOI:10.1177/15910199221097475
摘要

Introduction Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. Methods Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. Results Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2–93/2%) and specificity of 94/6% (CI: 0/914–0/966). CTA was the most sensitive modality (92.0%(CI:85/2–95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians’ sensitivity increased to 12/8% and interrater agreement to 0/193. Conclusion CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Echo采纳,获得10
1秒前
大兵发布了新的文献求助10
1秒前
所所应助王十采纳,获得10
2秒前
3秒前
圆圆完成签到,获得积分10
3秒前
3秒前
哭泣的铅笔完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
xs发布了新的文献求助10
6秒前
6秒前
7秒前
dow完成签到,获得积分10
8秒前
cigar完成签到,获得积分10
8秒前
Zrf完成签到,获得积分10
9秒前
9秒前
10秒前
大胆春天发布了新的文献求助10
10秒前
统统闪开发布了新的文献求助30
10秒前
11秒前
11秒前
可爱的函函应助王十采纳,获得10
11秒前
xs完成签到,获得积分10
11秒前
save发布了新的文献求助10
11秒前
爆米花应助西子阳采纳,获得10
12秒前
Zrf发布了新的文献求助30
13秒前
13秒前
14秒前
不懈奋进应助易达采纳,获得30
14秒前
对映体完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
嘻嘻完成签到,获得积分20
15秒前
16秒前
zjfmmu完成签到,获得积分10
16秒前
zhaoyali发布了新的文献求助10
17秒前
17秒前
浪里白条完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061