亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inspection and identification of transmission line insulator breakdown based on deep learning using aerial images

四轴飞行器 深度学习 人工智能 电力传输 计算机科学 绝缘体(电) 输电线路 计算机视觉 架空(工程) 鉴定(生物学) 航空影像 无人机 实时计算 工程类 电气工程 图像(数学) 航空航天工程 电信 生物 操作系统 植物 遗传学
作者
Md. Faiyaz Ahmed,J. C. Mohanta,Alok Sanyal
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:211: 108199-108199 被引量:60
标识
DOI:10.1016/j.epsr.2022.108199
摘要

The traditional methods of overhead power transmission line inspections are mostly unsuited as the height of transmission towers is too high and wide. Detection and inspection of insulators in aerial images with cluttered backgrounds is a challenging task for autonomous inspections. This manuscript mainly focuses on the development of autonomous Unmanned Aerial Vehicles (UAV/Quadcopter) that can hover over the transmission towers and capture images and videos by following pre-determined waypoints. To accomplish this, authors propose a new autonomous vision-based inspection that uses a Quadcopter as primary source of data, aerial images as the main source of information, and Deep Learning (DL) as the backbone analysis for inspection and focused on (i) insufficient training data, (ii) detection of insulators and their defects. A medium sized dataset of insulators for training and detection is created to overcome data insufficiency. The experimental results shows that the proposed deep learning architecture successfully identifies the anomalies of insulator such as, cracks, missing top caps and broken disk etc. The detection accuracy of the proposed deep learning algorithm can reach up to 93.5% with a detection speed of 58.2 frames/sec. The proposed DL algorithm has a promising potential towards smart inspection of insulators in power grids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助爱笑的傲晴采纳,获得10
10秒前
19秒前
22秒前
24秒前
28秒前
33秒前
49秒前
科研通AI6应助lemon采纳,获得30
53秒前
1分钟前
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
hahha发布了新的文献求助10
1分钟前
1分钟前
圆圆901234发布了新的文献求助10
1分钟前
英俊的铭应助hahha采纳,获得10
1分钟前
1分钟前
LHL完成签到,获得积分10
1分钟前
LeslieHu发布了新的文献求助10
1分钟前
1分钟前
圆圆901234完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
笨笨的怜雪完成签到 ,获得积分10
1分钟前
mumu发布了新的文献求助10
1分钟前
2分钟前
万能图书馆应助mumu采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
inRe发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316