🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study

医学 神经组阅片室 支持向量机 磁共振成像 人工智能 机器学习 无线电技术 队列 放射科 核医学 计算机科学 病理 神经学 精神科
作者
Zhiying He,Yitao Mao,Shanhong Lu,Lei Tan,Juxiong Xiao,Pingqing Tan,Hailin Zhang,Li Guo,Helei Yan,Jiaqi Tan,Donghai Huang,Yuanzheng Qiu,Xin Zhang,Xingwei Wang,Yong Liu
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (12): 8099-8110 被引量:23
标识
DOI:10.1007/s00330-022-08943-9
摘要

ObjectivesTo evaluate the effectiveness of machine learning models based on morphological magnetic resonance imaging (MRI) radiomics in the classification of parotid tumors.MethodsIn total, 298 patients with parotid tumors were randomly assigned to a training and test set at a ratio of 7:3. Radiomics features were extracted from the morphological MRI images and screened using the Select K Best and LASSO algorithm. Three-step machine learning models with XGBoost, SVM, and DT algorithms were developed to classify the parotid neoplasms into four subtypes. The ROC curve was used to measure the performance in each step. Diagnostic confusion matrices of these models were calculated for the test cohort and compared with those of the radiologists.ResultsSix, twelve, and eight optimal features were selected in each step of the three-step process, respectively. XGBoost produced the highest area under the curve (AUC) for all three steps in the training cohort (0.857, 0.882, and 0.908, respectively), and for the first step in the test cohort (0.826), but produced slightly lower AUCs than SVM in the latter two steps in the test cohort (0.817 vs. 0.833, and 0.789 vs. 0.821, respectively). The total accuracies of XGBoost and SVM in the confusion matrices (70.8% and 59.6%) outperformed those of DT and the radiologist (46.1% and 49.2%).ConclusionThis study demonstrated that machine learning models based on morphological MRI radiomics might be an assistive tool for parotid tumor classification, especially for preliminary screening in absence of more advanced scanning sequences, such as DWI.Key Points • Machine learning algorithms combined with morphological MRI radiomics could be useful in the preliminary classification of parotid tumors. • XGBoost algorithm performed better than SVM and DT in subtype differentiation of parotid tumors, while DT seemed to have a poor validation performance. • Using morphological MRI only, the XGBoost and SVM algorithms outperformed radiologists in the four-type classification task for parotid tumors, thus making these models a useful assistant diagnostic tool in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名

10分钟更新一次,完整排名情况
实时播报
深情安青应助Ronggaz采纳,获得10
刚刚
1秒前
天天发布了新的文献求助10
1秒前
kk发布了新的文献求助10
1秒前
小小罗发布了新的文献求助20
1秒前
1秒前
寒冷的寒梦完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
思源应助gongranpi采纳,获得10
4秒前
隐形曼青应助Jingshuiliushen采纳,获得30
4秒前
4秒前
科研通AI5应助抽屉里的猫采纳,获得10
5秒前
HJX关注了科研通微信公众号
5秒前
5秒前
学习通发布了新的文献求助10
5秒前
苗条发箍关注了科研通微信公众号
6秒前
6秒前
小闵发布了新的文献求助10
7秒前
7秒前
8秒前
酷波er应助丰富的念之采纳,获得10
8秒前
8秒前
薛张酒酒应助认真的薯片采纳,获得20
8秒前
可爱的函函应助亓大大采纳,获得10
9秒前
汉堡包应助黑夜不黑夜呀采纳,获得10
9秒前
Flac完成签到,获得积分10
9秒前
小高完成签到,获得积分20
9秒前
10秒前
轻松的芾完成签到,获得积分20
10秒前
10秒前
10秒前
zherrg发布了新的文献求助10
10秒前
SciGPT应助传统的鹏涛采纳,获得10
11秒前
superjing发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3610783
求助须知:如何正确求助?哪些是违规求助? 3181818
关于积分的说明 9597469
捐赠科研通 2888141
什么是DOI,文献DOI怎么找? 1584383
邀请新用户注册赠送积分活动 745135
科研通“疑难数据库(出版商)”最低求助积分说明 727476