Synergistic engineering of shell thickness and core ordering to boost the oxygen reduction performance

耐久性 材料科学 金属间化合物 纳米晶 催化作用 吸附 纳米技术 化学工程 纳米结构 冶金 复合材料 化学 物理化学 生物化学 合金 工程类
作者
Lijie Zhong,Xingming Zhang,L. Wang,Dingwang Yuan,Hui Deng,Jianfeng Tang,Lei Deng
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (22): 13784-13792 被引量:2
标识
DOI:10.1039/d2cp00861k
摘要

When benchmarked against the extended Pt(111), slightly weaker adsorption and stronger cohesion properties of surface Pt are required to improve activity and durability for the oxygen reduction reaction, respectively, making it challenging to meet both requirements on one surface. Here, using Pt(111) over-layers stressed and modified by Pt-TM (TM = Fe, Co, Ni, V, Cu, Ag, and Pd) intermetallics as examples, we theoretically identified ten promising catalysts by synergistically tailoring the skin thickness and substrate chemical ordering to simultaneously achieve weak adsorption and strong cohesion. More specifically, compared with Pt(111), all candidates exhibit 10-fold enhanced activity, half of which show improved durability, such as mono-layer skin on L12-Pt3Co or Pt3Fe, double-layer Pt on L13-Pt3Ni or Pt3Cu, and triple-layer skin on L11-PtCu, while double- or triple-layer skin on L10-PtCo or PtNi and double-layer skin on L12-PtFe3 show slightly poor durability. Although L10 and L12 based nanocrystals have been demonstrated extensively as outstanding catalysts, L11 and L13 ones hold great application potential. The coexistence of high activity and durability on the same surface is because of the different responses of surface adsorption and cohesion properties to the strain effects and ligand effects. When intermetallic-core@Pt-shell nanocrystals are constructed using this slab model, the necessity of protecting or eliminating low-coordinated Pt and the possibility of maximizing Pt(111) facets and core ordering by morphology engineering were highlighted. The current discovery provides a new paradigm toward the rational design of promising cathodic catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼完成签到 ,获得积分10
刚刚
2秒前
2秒前
3秒前
阿伟发布了新的文献求助10
3秒前
rynchee完成签到 ,获得积分10
5秒前
小肥羊发布了新的文献求助10
5秒前
5秒前
飘逸的威发布了新的文献求助10
7秒前
8秒前
yujiu发布了新的文献求助80
10秒前
13秒前
小丁发布了新的文献求助10
14秒前
15秒前
8R60d8应助冰河的羊采纳,获得10
16秒前
qw发布了新的文献求助10
17秒前
ricardo完成签到,获得积分10
18秒前
吴泽斌完成签到,获得积分10
18秒前
maox1aoxin应助任性的青易采纳,获得30
20秒前
L_93完成签到,获得积分10
20秒前
kkpinkman发布了新的文献求助10
20秒前
21秒前
norberta发布了新的文献求助10
22秒前
FashionBoy应助xz采纳,获得10
24秒前
26秒前
CarryZ8发布了新的文献求助10
26秒前
27秒前
丘比特应助安静的豆芽采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
追寻紫安应助CarryZ8采纳,获得10
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
所所应助科研通管家采纳,获得10
32秒前
hongw_liu完成签到,获得积分10
33秒前
稳重幻珊完成签到,获得积分20
34秒前
norberta完成签到,获得积分10
37秒前
38秒前
良辰应助樱桃儿采纳,获得10
39秒前
yx_cheng应助樱桃儿采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302883
求助须知:如何正确求助?哪些是违规求助? 2937188
关于积分的说明 8481040
捐赠科研通 2611141
什么是DOI,文献DOI怎么找? 1425611
科研通“疑难数据库(出版商)”最低求助积分说明 662410
邀请新用户注册赠送积分活动 646839