亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying content unaware features influencing popularity of videos on YouTube: A study based on seven regions

人气 计算机科学 内容(测量理论) 情报检索 心理学 数学 社会心理学 数学分析
作者
Zahid Halim,Sajjad Hussain,Raja Hashim Ali
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:206: 117836-117836 被引量:35
标识
DOI:10.1016/j.eswa.2022.117836
摘要

Predicting the popularity of User Generated Content (UGC) is a subject of interest to the Internet service providers, content makers, social media researchers, and online advertisers. However, it is also a challenging task due to multiple factors that influence social networks' content popularity. This work utilizes the Artificial Intelligence (AI) techniques to identify the features that contribute towards a video to enter into the trending category on YouTube. It examines the data generated by a video and its potential to get trending. For this, the present work utilizes AI for feature prediction. An AI-based methodology is presented that assesses the impact of various content-agnostic factors regarding video popularity in seven different regions, including Canada, France, Germany, India, Pakistan, United Arab Emirates, and the United States of America. A dataset is extracted from YouTube for these regions, and feature selection techniques are executed on the datasets to extract important attributes. A class label is assigned to each video, and the dataset is profiled having one of the two class labels, i.e., trending or non-trending. The top three features for each video (region wise) are obtained. It is observed that the trending behavior is dissimilar in different regions. Finally, three classifiers, namely, artificial neural networks, k-Nearest Neighbor, and support vector machine, are trained to predict if a video can get into the trending category on YouTube. The proposed solution is compared with two closely related state-of-the-art methods. This work is useful for content creators and YouTubers to make their video trending and more appealing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助lan采纳,获得10
9秒前
yubin.cao完成签到,获得积分10
12秒前
孙孙应助健壮的夜天采纳,获得10
18秒前
21秒前
24秒前
lan发布了新的文献求助10
25秒前
zzgpku完成签到,获得积分0
27秒前
ceeray23发布了新的文献求助20
30秒前
李治稳发布了新的文献求助10
35秒前
49秒前
50秒前
量子星尘发布了新的文献求助10
52秒前
cheng完成签到 ,获得积分10
52秒前
1111完成签到 ,获得积分10
55秒前
56秒前
小澜孩发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
柯一一应助舒适绮采纳,获得10
1分钟前
科研废物完成签到 ,获得积分10
1分钟前
summer夏完成签到,获得积分10
1分钟前
完美世界应助lf采纳,获得10
1分钟前
丘比特应助lei029采纳,获得10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
1分钟前
2分钟前
Tonyzad发布了新的文献求助10
2分钟前
2分钟前
leeSongha完成签到 ,获得积分10
2分钟前
2分钟前
distinct发布了新的文献求助10
2分钟前
2分钟前
一一完成签到 ,获得积分10
2分钟前
许三问完成签到 ,获得积分0
2分钟前
如意的书桃完成签到,获得积分10
2分钟前
boluo666完成签到 ,获得积分10
2分钟前
taiwenshuo发布了新的文献求助10
2分钟前
lf发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Lesley完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976619
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204567
捐赠科研通 3257390
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613