Identifying content unaware features influencing popularity of videos on YouTube: A study based on seven regions

人气 计算机科学 内容(测量理论) 情报检索 心理学 数学 社会心理学 数学分析
作者
Zahid Halim,Sajjad Hussain,Raja Hashim Ali
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:206: 117836-117836 被引量:35
标识
DOI:10.1016/j.eswa.2022.117836
摘要

Predicting the popularity of User Generated Content (UGC) is a subject of interest to the Internet service providers, content makers, social media researchers, and online advertisers. However, it is also a challenging task due to multiple factors that influence social networks' content popularity. This work utilizes the Artificial Intelligence (AI) techniques to identify the features that contribute towards a video to enter into the trending category on YouTube. It examines the data generated by a video and its potential to get trending. For this, the present work utilizes AI for feature prediction. An AI-based methodology is presented that assesses the impact of various content-agnostic factors regarding video popularity in seven different regions, including Canada, France, Germany, India, Pakistan, United Arab Emirates, and the United States of America. A dataset is extracted from YouTube for these regions, and feature selection techniques are executed on the datasets to extract important attributes. A class label is assigned to each video, and the dataset is profiled having one of the two class labels, i.e., trending or non-trending. The top three features for each video (region wise) are obtained. It is observed that the trending behavior is dissimilar in different regions. Finally, three classifiers, namely, artificial neural networks, k-Nearest Neighbor, and support vector machine, are trained to predict if a video can get into the trending category on YouTube. The proposed solution is compared with two closely related state-of-the-art methods. This work is useful for content creators and YouTubers to make their video trending and more appealing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
注水萝卜完成签到 ,获得积分10
刚刚
Chem34完成签到,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
hhh2018687完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
嘒彼小星完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
ri_290完成签到,获得积分10
14秒前
15秒前
nsc发布了新的文献求助30
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助10
17秒前
nsc发布了新的文献求助30
17秒前
nsc发布了新的文献求助10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022