Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 大地测量学 业务 营销 考古 历史 程序设计语言 法学 地理 政治 政治学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt完成签到,获得积分10
刚刚
有信心完成签到 ,获得积分10
2秒前
uwu关闭了uwu文献求助
2秒前
3秒前
4秒前
4秒前
刘慧完成签到 ,获得积分10
5秒前
问你有没有发挥完成签到,获得积分10
6秒前
orixero应助嘁嘁嘁采纳,获得10
6秒前
7秒前
Ying完成签到,获得积分10
8秒前
DreamMaker应助文件撤销了驳回
8秒前
8秒前
8秒前
YFL发布了新的文献求助10
9秒前
顿手把其完成签到,获得积分10
11秒前
为十发布了新的文献求助10
11秒前
11秒前
顺利山柏发布了新的文献求助10
12秒前
冬虫夏草发布了新的文献求助10
13秒前
15秒前
15秒前
18秒前
嘁嘁嘁完成签到,获得积分10
18秒前
科研小白完成签到 ,获得积分10
21秒前
Gavin完成签到,获得积分10
21秒前
21秒前
嘁嘁嘁发布了新的文献求助10
22秒前
思源应助仙女采纳,获得10
23秒前
kiki0808完成签到 ,获得积分10
24秒前
Lio完成签到,获得积分10
25秒前
25秒前
阿龙发布了新的文献求助10
25秒前
25秒前
Dandanhuang发布了新的文献求助10
26秒前
lili发布了新的文献求助10
27秒前
杨子怡完成签到 ,获得积分10
28秒前
为十完成签到,获得积分10
29秒前
Leon Lai完成签到,获得积分0
29秒前
Aries完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080