亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 地理 程序设计语言 历史 业务 法学 政治学 政治 营销 考古 大地测量学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
拾新发布了新的文献求助10
5秒前
7秒前
11秒前
wenyiboy完成签到,获得积分10
12秒前
wish发布了新的文献求助10
12秒前
yaooo发布了新的文献求助10
16秒前
激动的菲鹰完成签到,获得积分20
20秒前
刘雨森完成签到 ,获得积分10
21秒前
地狱拖拉机完成签到,获得积分10
27秒前
yaooo完成签到,获得积分10
42秒前
热情归尘发布了新的文献求助10
42秒前
42秒前
45秒前
50秒前
Xdz完成签到 ,获得积分10
52秒前
52秒前
碧蓝可仁完成签到 ,获得积分10
1分钟前
1分钟前
Tao2023发布了新的文献求助30
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
cc完成签到,获得积分20
1分钟前
Tao2023发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
xxx完成签到,获得积分10
2分钟前
kento应助科研通管家采纳,获得50
2分钟前
kento应助科研通管家采纳,获得50
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
达西苏应助科研通管家采纳,获得10
2分钟前
李东东完成签到 ,获得积分10
2分钟前
Lucas应助湿棉花采纳,获得10
2分钟前
云雨完成签到 ,获得积分10
2分钟前
Hello应助ffddsdc采纳,获得10
3分钟前
3分钟前
祁问儿完成签到 ,获得积分10
3分钟前
LSY28发布了新的文献求助10
3分钟前
稳重涔雨完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584653
求助须知:如何正确求助?哪些是违规求助? 4668536
关于积分的说明 14771456
捐赠科研通 4612219
什么是DOI,文献DOI怎么找? 2530103
邀请新用户注册赠送积分活动 1499037
关于科研通互助平台的介绍 1467464