Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 地理 程序设计语言 历史 业务 法学 政治学 政治 营销 考古 大地测量学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助媛羽厨采纳,获得10
刚刚
华仔应助tp040900采纳,获得10
刚刚
3秒前
Liufgui应助jillian采纳,获得10
3秒前
Zjx应助雪山飞龙采纳,获得10
3秒前
白紫寒完成签到,获得积分10
4秒前
Hello应助称心寒松采纳,获得10
5秒前
5秒前
两棵大白菜完成签到,获得积分10
5秒前
明亮灭绝发布了新的文献求助10
5秒前
7秒前
Amanda完成签到,获得积分10
7秒前
苏蔚完成签到,获得积分10
7秒前
jklwss发布了新的文献求助10
8秒前
9秒前
隐形曼青应助思维隋采纳,获得10
12秒前
明亮灭绝完成签到,获得积分10
13秒前
格瑞格完成签到,获得积分10
13秒前
称心寒松发布了新的文献求助10
14秒前
丘比特应助lulu采纳,获得10
14秒前
我是老大应助521采纳,获得10
15秒前
15秒前
朴素的幻然完成签到,获得积分10
17秒前
曾阿牛完成签到,获得积分10
18秒前
香蕉觅云应助李欣华采纳,获得10
19秒前
jklwss完成签到,获得积分10
19秒前
19秒前
21秒前
自然的霸完成签到,获得积分10
22秒前
务实皓轩发布了新的文献求助10
22秒前
22秒前
MYY完成签到,获得积分10
23秒前
23秒前
23秒前
Zy发布了新的文献求助30
23秒前
nightmare完成签到,获得积分20
23秒前
zhtingho完成签到,获得积分10
25秒前
tp040900发布了新的文献求助10
25秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629