Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 地理 程序设计语言 历史 业务 法学 政治学 政治 营销 考古 大地测量学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加肥狗发布了新的文献求助10
刚刚
1秒前
秦磊完成签到,获得积分10
2秒前
boyue完成签到,获得积分10
2秒前
汉堡包应助gzmejiji采纳,获得10
3秒前
碧蓝的母鸡完成签到,获得积分10
4秒前
shadow完成签到,获得积分10
5秒前
小美酱发布了新的文献求助10
5秒前
li完成签到 ,获得积分10
6秒前
吕yj完成签到,获得积分10
8秒前
Dado应助A SHE采纳,获得10
9秒前
QW111完成签到,获得积分10
9秒前
维时发布了新的文献求助10
9秒前
橘里完成签到,获得积分10
9秒前
儒雅儒雅完成签到,获得积分10
9秒前
9秒前
槿裡完成签到 ,获得积分10
10秒前
王治豪完成签到,获得积分10
10秒前
Arilus完成签到 ,获得积分10
10秒前
星辰大海应助猪头小队长采纳,获得10
10秒前
11秒前
小美酱完成签到,获得积分10
12秒前
飘逸鸽子完成签到,获得积分10
12秒前
liu完成签到,获得积分10
13秒前
xue完成签到 ,获得积分10
13秒前
neuarcher完成签到,获得积分10
13秒前
猫小咪完成签到,获得积分10
14秒前
15秒前
lshao完成签到 ,获得积分10
15秒前
李子昂完成签到,获得积分10
15秒前
飞儿完成签到 ,获得积分10
16秒前
z_king_d_23完成签到,获得积分10
16秒前
闪闪的乐蕊完成签到,获得积分10
17秒前
Hello应助ldn采纳,获得30
17秒前
Bit完成签到,获得积分10
17秒前
zjq完成签到,获得积分10
17秒前
18秒前
让我静静完成签到,获得积分10
18秒前
18秒前
addi111完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568370
求助须知:如何正确求助?哪些是违规求助? 4652947
关于积分的说明 14702495
捐赠科研通 4594744
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463734