Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 大地测量学 业务 营销 考古 历史 程序设计语言 法学 地理 政治 政治学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZY发布了新的文献求助10
1秒前
1秒前
婉儿完成签到,获得积分10
1秒前
2秒前
waqar246发布了新的文献求助10
2秒前
littleknees发布了新的文献求助10
3秒前
3秒前
王舍予完成签到,获得积分10
3秒前
4秒前
4秒前
小赵发布了新的文献求助10
4秒前
RR发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
领导范儿应助Rick采纳,获得10
6秒前
yujia完成签到,获得积分10
6秒前
6秒前
WangRN发布了新的文献求助10
6秒前
nidie发布了新的文献求助10
7秒前
他二舅flying完成签到,获得积分10
8秒前
HJJHJH发布了新的文献求助10
9秒前
Emy完成签到 ,获得积分10
9秒前
ZZY完成签到,获得积分10
9秒前
夏目发布了新的文献求助10
9秒前
hzhang01完成签到,获得积分20
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
袁奇点发布了新的文献求助10
11秒前
11秒前
12秒前
残雪孤烛灭完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
体贴代容发布了新的文献求助10
15秒前
阚乐乐完成签到,获得积分10
16秒前
16秒前
kiminonawa应助读书的时候采纳,获得30
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800