Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 大地测量学 业务 营销 考古 历史 程序设计语言 法学 地理 政治 政治学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ltt发布了新的文献求助10
1秒前
小蘑菇应助Rixxed采纳,获得200
1秒前
1秒前
1秒前
核桃发布了新的文献求助30
1秒前
Witness完成签到,获得积分10
1秒前
隔壁的小民完成签到,获得积分10
2秒前
天空完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Tan发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Witness发布了新的文献求助10
4秒前
Ting完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
小蘑菇应助Islet采纳,获得10
6秒前
mjje发布了新的文献求助10
6秒前
miksimet2005发布了新的文献求助10
7秒前
Owen应助Rixxed采纳,获得10
7秒前
小菜狗发布了新的文献求助10
7秒前
岳岳岳发布了新的文献求助10
7秒前
小王时完成签到,获得积分10
7秒前
科研通AI2S应助平淡凝竹采纳,获得10
8秒前
terry发布了新的文献求助10
8秒前
Littboshi发布了新的文献求助50
9秒前
糟糕的颜完成签到 ,获得积分10
10秒前
项人发布了新的文献求助10
10秒前
tangyu12发布了新的文献求助10
13秒前
wanci应助茶米采纳,获得10
13秒前
朴实颤发布了新的文献求助10
14秒前
14秒前
善学以致用应助meng采纳,获得10
14秒前
山茶完成签到 ,获得积分20
14秒前
lkkkkkk完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207