Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 大地测量学 业务 营销 考古 历史 程序设计语言 法学 地理 政治 政治学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉诗蕊应助alay采纳,获得10
刚刚
www发布了新的文献求助10
1秒前
GPTea发布了新的文献求助10
2秒前
2秒前
归海大楚完成签到,获得积分10
2秒前
爱听歌的复天完成签到,获得积分10
3秒前
Lwj完成签到,获得积分10
3秒前
3秒前
小芋完成签到,获得积分10
4秒前
4秒前
watermelon应助fff采纳,获得10
4秒前
隐形曼青应助杨张浩采纳,获得10
4秒前
4秒前
窦房结发布了新的文献求助10
4秒前
4秒前
蜗牛完成签到,获得积分10
5秒前
5秒前
Isaac完成签到,获得积分10
5秒前
素养哥完成签到,获得积分20
6秒前
6秒前
yumj完成签到,获得积分10
6秒前
6秒前
XJTU_jyh完成签到,获得积分10
6秒前
7秒前
Lwj发布了新的文献求助10
7秒前
wanci应助虚拟的水壶采纳,获得10
7秒前
Docgyj完成签到 ,获得积分0
8秒前
第二支羽毛完成签到,获得积分10
8秒前
www完成签到,获得积分10
8秒前
鱼王木木完成签到,获得积分10
8秒前
8秒前
8秒前
1mo完成签到,获得积分10
9秒前
liushiyi完成签到,获得积分10
9秒前
Mininine完成签到,获得积分10
9秒前
9秒前
魁梧的豆完成签到,获得积分10
9秒前
CoverSx完成签到,获得积分10
10秒前
心灵美映之完成签到 ,获得积分10
10秒前
在雨里思考完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619