Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 地理 程序设计语言 历史 业务 法学 政治学 政治 营销 考古 大地测量学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
葬天弃完成签到,获得积分20
刚刚
1397发布了新的文献求助10
刚刚
kuangweiming完成签到,获得积分10
刚刚
1秒前
研友_VZG7GZ应助魔音甜菜采纳,获得10
1秒前
mengjie完成签到,获得积分10
1秒前
paprika完成签到,获得积分10
1秒前
苗广山完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
LI完成签到,获得积分10
4秒前
顾矜应助yansioo采纳,获得10
4秒前
研友发布了新的文献求助10
5秒前
5秒前
独特语儿完成签到,获得积分10
5秒前
无极微光应助自然的吐司采纳,获得20
6秒前
6秒前
陈nn发布了新的文献求助30
6秒前
李锐发布了新的文献求助20
6秒前
natuer发布了新的文献求助10
6秒前
7秒前
7秒前
辛勤的绮琴完成签到,获得积分10
7秒前
LI发布了新的文献求助10
7秒前
hkh发布了新的文献求助10
8秒前
可爱的函函应助sciscisci采纳,获得10
8秒前
Zero完成签到,获得积分10
8秒前
星星星醒醒完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
lizhi完成签到,获得积分10
10秒前
10秒前
wblr发布了新的文献求助10
10秒前
baby发布了新的文献求助30
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624261
求助须知:如何正确求助?哪些是违规求助? 4710125
关于积分的说明 14949526
捐赠科研通 4778199
什么是DOI,文献DOI怎么找? 2553176
邀请新用户注册赠送积分活动 1515094
关于科研通互助平台的介绍 1475490