A survey of visual navigation: From geometry to embodied AI

具身认知 计算机科学 透视图(图形) 一般化 风格(视觉艺术) 人机交互 任务(项目管理) 人工智能 数据科学 数学 数学分析 管理 考古 经济 历史
作者
Tianyao Zhang,Xiaoguang Hu,Jin Xiao,Guofeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105036-105036 被引量:16
标识
DOI:10.1016/j.engappai.2022.105036
摘要

The capacity to extract information and comprehend an unseen environment is critical for mobile robots to navigate. Few surveys has mentioned the combinatorial-non-optimality problem of the traditional visual navigation methods. As computer vision technology has improved in recent years, visual navigation approaches have escalated drastically, particularly after the appearance of the CVPR Embodied AI workshop. However, few studies take these important changes into account. This survey fills this research gap by collecting, analyzing, and summarizing more than 100 recent papers. The majority of them are published within 5 years and are cited over 80 times, which provide more credible results. Based on our thorough comparison, this survey categorizes all visual navigation methods into two styles: geometry style and embodied AI style. This survey examines these two styles from the perspective of input–output. In addition, this survey attempts to provide mathematical formulations for each style. This paper provides a case study to illustrate the methodological paradigm with greatest potential. This methodological paradigm using photo-realistic simulation in the Embodied AI style, which could solve the combinatorial-non-optimality problem. Thereafter, this survey discusses several issues including pros–cons analysis, problem formulation, common framework, task generalization, dynamic environment consideration, sim-to-real, and inspiring approaches, which are all based on the scholars who have cited the method. In the last part, challenges and future trends are summarized. This survey would assist researchers who work on AI-empowered visual navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ellie完成签到 ,获得积分10
刚刚
晴天完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
EOFG0PW发布了新的文献求助10
2秒前
buno应助yug采纳,获得10
2秒前
hgh完成签到,获得积分10
2秒前
001关闭了001文献求助
3秒前
研友_VZG7GZ应助Fareth采纳,获得10
3秒前
4秒前
韭菜盒子发布了新的文献求助10
4秒前
4秒前
大意的安白完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
学术蟑螂完成签到,获得积分10
5秒前
5秒前
5秒前
兴奋冷松完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
饭小心完成签到,获得积分20
6秒前
luodd完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
8秒前
小吴发布了新的文献求助10
8秒前
甜甜灵槐发布了新的文献求助10
9秒前
yyang发布了新的文献求助10
9秒前
9秒前
超级水壶发布了新的文献求助10
9秒前
manan发布了新的文献求助10
9秒前
9秒前
fxy完成签到 ,获得积分10
10秒前
爆米花应助大意的安白采纳,获得10
10秒前
wen完成签到,获得积分10
10秒前
Lucas应助徐慕源采纳,获得10
10秒前
袁国惠发布了新的文献求助10
10秒前
加油发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740