A survey of visual navigation: From geometry to embodied AI

具身认知 计算机科学 透视图(图形) 一般化 风格(视觉艺术) 人机交互 任务(项目管理) 人工智能 数据科学 数学 历史 数学分析 经济 考古 管理
作者
Tianyao Zhang,Xiaoguang Hu,Jin Xiao,Guofeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105036-105036 被引量:23
标识
DOI:10.1016/j.engappai.2022.105036
摘要

The capacity to extract information and comprehend an unseen environment is critical for mobile robots to navigate. Few surveys has mentioned the combinatorial-non-optimality problem of the traditional visual navigation methods. As computer vision technology has improved in recent years, visual navigation approaches have escalated drastically, particularly after the appearance of the CVPR Embodied AI workshop. However, few studies take these important changes into account. This survey fills this research gap by collecting, analyzing, and summarizing more than 100 recent papers. The majority of them are published within 5 years and are cited over 80 times, which provide more credible results. Based on our thorough comparison, this survey categorizes all visual navigation methods into two styles: geometry style and embodied AI style. This survey examines these two styles from the perspective of input–output. In addition, this survey attempts to provide mathematical formulations for each style. This paper provides a case study to illustrate the methodological paradigm with greatest potential. This methodological paradigm using photo-realistic simulation in the Embodied AI style, which could solve the combinatorial-non-optimality problem. Thereafter, this survey discusses several issues including pros–cons analysis, problem formulation, common framework, task generalization, dynamic environment consideration, sim-to-real, and inspiring approaches, which are all based on the scholars who have cited the method. In the last part, challenges and future trends are summarized. This survey would assist researchers who work on AI-empowered visual navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Vinny发布了新的文献求助80
1秒前
奥特曼打小人完成签到,获得积分10
1秒前
kei发布了新的文献求助10
2秒前
迷路的邪欢完成签到,获得积分10
2秒前
wanci应助fairy采纳,获得10
3秒前
3秒前
小马甲应助裤里采纳,获得10
3秒前
3秒前
Hydro发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
7秒前
想顺利毕业完成签到 ,获得积分10
7秒前
郭腾发布了新的文献求助10
7秒前
bkagyin应助迷路的邪欢采纳,获得20
7秒前
量子星尘发布了新的文献求助10
8秒前
donny发布了新的文献求助10
8秒前
丘比特应助杜晓倩采纳,获得10
9秒前
tyz完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
无花果应助potato采纳,获得10
10秒前
无奈萝发布了新的文献求助10
10秒前
11秒前
情怀应助茶米采纳,获得10
11秒前
12秒前
米米碎片完成签到,获得积分10
12秒前
rsdggsrser完成签到 ,获得积分10
13秒前
Ttttt发布了新的文献求助10
13秒前
wanci应助qiong采纳,获得10
14秒前
tyz关闭了tyz文献求助
14秒前
14秒前
FashionBoy应助donny采纳,获得10
15秒前
顺利毕业完成签到,获得积分10
15秒前
学长发布了新的文献求助10
16秒前
刘岩松完成签到,获得积分20
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133