亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey of visual navigation: From geometry to embodied AI

具身认知 计算机科学 透视图(图形) 一般化 风格(视觉艺术) 人机交互 任务(项目管理) 人工智能 数据科学 数学 数学分析 管理 考古 经济 历史
作者
Tianyao Zhang,Xiaoguang Hu,Jin Xiao,Guofeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:114: 105036-105036 被引量:23
标识
DOI:10.1016/j.engappai.2022.105036
摘要

The capacity to extract information and comprehend an unseen environment is critical for mobile robots to navigate. Few surveys has mentioned the combinatorial-non-optimality problem of the traditional visual navigation methods. As computer vision technology has improved in recent years, visual navigation approaches have escalated drastically, particularly after the appearance of the CVPR Embodied AI workshop. However, few studies take these important changes into account. This survey fills this research gap by collecting, analyzing, and summarizing more than 100 recent papers. The majority of them are published within 5 years and are cited over 80 times, which provide more credible results. Based on our thorough comparison, this survey categorizes all visual navigation methods into two styles: geometry style and embodied AI style. This survey examines these two styles from the perspective of input–output. In addition, this survey attempts to provide mathematical formulations for each style. This paper provides a case study to illustrate the methodological paradigm with greatest potential. This methodological paradigm using photo-realistic simulation in the Embodied AI style, which could solve the combinatorial-non-optimality problem. Thereafter, this survey discusses several issues including pros–cons analysis, problem formulation, common framework, task generalization, dynamic environment consideration, sim-to-real, and inspiring approaches, which are all based on the scholars who have cited the method. In the last part, challenges and future trends are summarized. This survey would assist researchers who work on AI-empowered visual navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
充电宝应助wanli采纳,获得10
20秒前
42秒前
桐桐应助jarrykim采纳,获得10
47秒前
1分钟前
1分钟前
1分钟前
John完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
jarrykim发布了新的文献求助10
2分钟前
大个应助啊呆哦采纳,获得10
2分钟前
2分钟前
啊呆哦完成签到,获得积分10
2分钟前
在水一方应助sidneyyang采纳,获得10
2分钟前
啊呆哦发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
吴南宛发布了新的文献求助10
4分钟前
sidneyyang完成签到,获得积分10
4分钟前
211JZH完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
sidneyyang发布了新的文献求助10
4分钟前
5分钟前
Ashao完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889441
求助须知:如何正确求助?哪些是违规求助? 4173461
关于积分的说明 12952082
捐赠科研通 3934886
什么是DOI,文献DOI怎么找? 2159100
邀请新用户注册赠送积分活动 1177437
关于科研通互助平台的介绍 1082254