A survey of visual navigation: From geometry to embodied AI

具身认知 计算机科学 透视图(图形) 一般化 风格(视觉艺术) 人机交互 任务(项目管理) 人工智能 数据科学 数学 数学分析 管理 考古 经济 历史
作者
Tianyao Zhang,Xiaoguang Hu,Jin Xiao,Guofeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:114: 105036-105036 被引量:14
标识
DOI:10.1016/j.engappai.2022.105036
摘要

The capacity to extract information and comprehend an unseen environment is critical for mobile robots to navigate. Few surveys has mentioned the combinatorial-non-optimality problem of the traditional visual navigation methods. As computer vision technology has improved in recent years, visual navigation approaches have escalated drastically, particularly after the appearance of the CVPR Embodied AI workshop. However, few studies take these important changes into account. This survey fills this research gap by collecting, analyzing, and summarizing more than 100 recent papers. The majority of them are published within 5 years and are cited over 80 times, which provide more credible results. Based on our thorough comparison, this survey categorizes all visual navigation methods into two styles: geometry style and embodied AI style. This survey examines these two styles from the perspective of input–output. In addition, this survey attempts to provide mathematical formulations for each style. This paper provides a case study to illustrate the methodological paradigm with greatest potential. This methodological paradigm using photo-realistic simulation in the Embodied AI style, which could solve the combinatorial-non-optimality problem. Thereafter, this survey discusses several issues including pros–cons analysis, problem formulation, common framework, task generalization, dynamic environment consideration, sim-to-real, and inspiring approaches, which are all based on the scholars who have cited the method. In the last part, challenges and future trends are summarized. This survey would assist researchers who work on AI-empowered visual navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助龚成明采纳,获得10
刚刚
爱吃饭的黄哥完成签到,获得积分10
1秒前
科研通AI2S应助Lewis采纳,获得10
4秒前
4秒前
romme完成签到,获得积分10
6秒前
7秒前
爱撒娇的鱼应助gtgyh采纳,获得10
9秒前
Vegetable_Dog完成签到,获得积分10
10秒前
小七发布了新的文献求助10
10秒前
Vincent发布了新的文献求助10
11秒前
索奎发布了新的文献求助10
11秒前
优雅灵波完成签到,获得积分10
12秒前
丫丫完成签到 ,获得积分10
15秒前
Hello应助Maria采纳,获得10
17秒前
7777777完成签到,获得积分10
18秒前
18秒前
Vegetable_Dog发布了新的文献求助10
19秒前
19秒前
郑波涛发布了新的文献求助10
21秒前
ddddd完成签到,获得积分10
21秒前
索奎完成签到 ,获得积分10
23秒前
龚成明发布了新的文献求助10
24秒前
25秒前
桔梗花开完成签到,获得积分10
26秒前
NZH发布了新的文献求助20
26秒前
kk完成签到,获得积分10
28秒前
暗夜轰炸机完成签到,获得积分20
28秒前
桂花载酒完成签到,获得积分10
33秒前
郑波涛完成签到,获得积分10
35秒前
只爱医学不爱你完成签到,获得积分10
36秒前
Kishi完成签到,获得积分10
37秒前
慢慢的地理人完成签到,获得积分10
40秒前
默默的甜瓜完成签到,获得积分10
40秒前
41秒前
41秒前
xxl发布了新的文献求助10
41秒前
略略完成签到,获得积分10
42秒前
AT应助cheers采纳,获得10
43秒前
冬柳发布了新的文献求助10
45秒前
孔乙己完成签到,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079