Constrained multiobjective differential evolution algorithm with infeasible-proportion control mechanism

计算机科学 机制(生物学) 数学优化 控制(管理) 差异进化 差速器(机械装置) 算法 人工智能 数学 哲学 认识论 工程类 航空航天工程
作者
Jing Liang,Xuanxuan Ban,Kunjie Yu,Kangjia Qiao,Boyang Qu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:250: 109105-109105 被引量:15
标识
DOI:10.1016/j.knosys.2022.109105
摘要

When solving constrained multiobjective optimization problems, it is crucial to deal with several conflicting objectives and various constraints simultaneously. To address these two issues, a constrained multiobjective differential evolution algorithm with an infeasible-proportion control mechanism is presented in this paper. Specifically, two populations are cooperatively employed in the evolution process. The first population is used to solve the original problem, that is, to explore the constrained Pareto front, while the second population is created to search for high-quality objective function information. Furthermore, differential evolution with two specific mutation strategies is employed to update each population. Cooperative strategies can not only balance diversity and convergence but also realize information exchange between the two populations provide new evolutionary directions. In addition, an infeasible-proportion control mechanism is used to gradually decrease the proportion of infeasible solutions in the second population. This enables the main population to pass through the infeasible region barrier in the early evolution stage and facilitates the search for a constrained Pareto front in the later evolution stage. Systematic experiments on 65 benchmark test functions show that the proposed algorithm is superior to or at least comparable to five well-established constrained multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
周雪完成签到 ,获得积分10
3秒前
3秒前
明郑敏完成签到 ,获得积分10
4秒前
叡叡完成签到,获得积分10
5秒前
JieYin完成签到,获得积分10
5秒前
5秒前
Lujiamingfei完成签到,获得积分10
5秒前
wzgkeyantong完成签到,获得积分10
6秒前
学术垃圾发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
jenningseastera应助LYW采纳,获得30
8秒前
8秒前
Hello应助糟糕的雨莲采纳,获得10
8秒前
evergarden完成签到,获得积分10
10秒前
风趣小蜜蜂完成签到 ,获得积分10
10秒前
Ava应助波哥采纳,获得10
13秒前
合欢发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
18秒前
AHMZI完成签到,获得积分10
18秒前
ccc发布了新的文献求助10
19秒前
寒冷的沛珊完成签到 ,获得积分10
20秒前
刘兆亮发布了新的文献求助10
21秒前
科研通AI6应助饱满的冬卉采纳,获得10
21秒前
小Z完成签到,获得积分10
21秒前
bierbia完成签到 ,获得积分10
22秒前
冷静的手套完成签到 ,获得积分10
23秒前
月亮完成签到 ,获得积分10
23秒前
爆米花应助LSF采纳,获得10
23秒前
heavenhorse应助执着的纲采纳,获得30
24秒前
24秒前
思源应助欣喜的长颈鹿采纳,获得10
24秒前
25秒前
25秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466