Constrained multiobjective differential evolution algorithm with infeasible-proportion control mechanism

计算机科学 机制(生物学) 数学优化 控制(管理) 差异进化 差速器(机械装置) 算法 人工智能 数学 哲学 认识论 工程类 航空航天工程
作者
Jing Liang,Xuanxuan Ban,Kunjie Yu,Kangjia Qiao,Boyang Qu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:250: 109105-109105 被引量:15
标识
DOI:10.1016/j.knosys.2022.109105
摘要

When solving constrained multiobjective optimization problems, it is crucial to deal with several conflicting objectives and various constraints simultaneously. To address these two issues, a constrained multiobjective differential evolution algorithm with an infeasible-proportion control mechanism is presented in this paper. Specifically, two populations are cooperatively employed in the evolution process. The first population is used to solve the original problem, that is, to explore the constrained Pareto front, while the second population is created to search for high-quality objective function information. Furthermore, differential evolution with two specific mutation strategies is employed to update each population. Cooperative strategies can not only balance diversity and convergence but also realize information exchange between the two populations provide new evolutionary directions. In addition, an infeasible-proportion control mechanism is used to gradually decrease the proportion of infeasible solutions in the second population. This enables the main population to pass through the infeasible region barrier in the early evolution stage and facilitates the search for a constrained Pareto front in the later evolution stage. Systematic experiments on 65 benchmark test functions show that the proposed algorithm is superior to or at least comparable to five well-established constrained multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
xiongyh10发布了新的文献求助10
刚刚
zk关闭了zk文献求助
1秒前
1秒前
BJL发布了新的文献求助10
1秒前
1秒前
LF完成签到 ,获得积分10
1秒前
coco发布了新的文献求助10
1秒前
2秒前
2秒前
传奇3应助科研工作者采纳,获得10
2秒前
可爱的函函应助Yixin_Niu采纳,获得10
3秒前
3秒前
3秒前
yellowflash发布了新的文献求助10
3秒前
笑对人生关注了科研通微信公众号
3秒前
Akim应助奔跑的棉花采纳,获得10
4秒前
苗条的语海完成签到,获得积分10
4秒前
4秒前
搜集达人应助欣慰的妙菱采纳,获得30
4秒前
科研通AI2S应助Eina采纳,获得10
4秒前
砡君应助xiaoyan采纳,获得10
4秒前
yld发布了新的文献求助10
4秒前
搜集达人应助专注的问筠采纳,获得10
4秒前
4秒前
maytang发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
ruqinmq完成签到,获得积分10
5秒前
锕系第八元素完成签到,获得积分10
5秒前
无花果应助飞槐采纳,获得10
5秒前
WanRan发布了新的文献求助10
5秒前
Bonobonoya发布了新的文献求助10
6秒前
Jasper应助tangyuan采纳,获得10
6秒前
bxsg完成签到 ,获得积分20
6秒前
6秒前
Lucas应助叶子采纳,获得10
6秒前
guagua发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894