China’s higher education development evaluation based on GA-BP neural network

中国 高等教育 人工神经网络 趋同(经济学) 熵(时间箭头) 投影寻踪 经济增长 计算机科学 政治学 人工智能 经济 物理 量子力学 法学
作者
Yanzhou Ren,Xinyu Wang,Zelong Li
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
卷期号:22 (5): 1763-1778
标识
DOI:10.3233/jcm-226143
摘要

The development of higher education supplies a large number of high-level talents to the society, which is the key to building a harmonious society. At present, the development of regional higher education is extremely uneven, and it is the top priority of education development that it is urgent to clarify the situation of regional higher education. This article constructs a comprehensive evaluation index system of higher education development from a total of 19 indicators from five dimensions of talent training, teacher strength, scientific research output, infrastructure and social services, and then uses entropy and genetic algorithm-projection pursuit model to calculate the weight. GA-BP and BP neural network models are used for comprehensive evaluation. It is found that: (1) The most important factors affecting the development of higher education are technology transfer income and the application of R&D achievements in colleges and universities; (2) Compared with BP neural network, GA optimizes BP neural network in terms of effectiveness, convergence speed, and accuracy. (3) Generally speaking, during the research period, the development of China’s higher education has gradually improved, with an average annual growth rate of 3.5%. In terms of sub-regions, the provinces with excellent higher education development levels have increased from 0 in 2008. The number has increased to 5 in 2019, and the development of higher education among provinces is extremely uneven, and the differences between provinces are gradually increasing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hey发布了新的文献求助10
刚刚
2秒前
orixero应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
3秒前
夏漆应助科研通管家采纳,获得20
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
思源应助阿冰狸子采纳,获得10
4秒前
5秒前
JamesPei应助wang采纳,获得10
5秒前
知行完成签到,获得积分10
6秒前
6秒前
林小鱼完成签到,获得积分10
6秒前
不安的富完成签到 ,获得积分10
6秒前
7秒前
pathway完成签到,获得积分10
7秒前
爆米花应助chenren采纳,获得30
8秒前
8秒前
ppp完成签到,获得积分10
8秒前
8秒前
11秒前
crookshanks88发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
怀挺冲鸭完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422236
求助须知:如何正确求助?哪些是违规求助? 3022621
关于积分的说明 8901656
捐赠科研通 2710004
什么是DOI,文献DOI怎么找? 1486265
科研通“疑难数据库(出版商)”最低求助积分说明 686979
邀请新用户注册赠送积分活动 682186