A Novel Object Recognition Algorithm Based on Improved YOLOv5 Model for Patient Care Robots

计算机科学 最大值和最小值 机器人 人工智能 目标检测 模拟退火 背景(考古学) 算法 对象(语法) 噪音(视频) 计算机视觉 模式识别(心理学) 图像(数学) 数学分析 古生物学 数学 生物
作者
Yina Wang,Guoqiang Fu
出处
期刊:International Journal of Humanoid Robotics [World Scientific]
卷期号:19 (02) 被引量:8
标识
DOI:10.1142/s0219843622500104
摘要

The rapid development of computer vision raises a new research area involving patient care robots. Such robotic systems require fast target recognition at long ranges, where detecting smaller objects is notoriously challenging due to the cameras’ low resolution and noise. Spurred by these concerns, this paper develops a novel object recognition algorithm that solves these problems. Specifically, we amend YOLOv5 with our proposed sparse detection algorithm aiming to improve detection efficiency by separating the most significant context features and constructing smaller and less computational expensive models. Furthermore, we extend FReLU and suggest a novel activation function to improve recognition accuracy, which presents an extended nonlinearity increasing the expressiveness of the activation function. Finally, we propose sine annealing, which affords a trajectory that tends to cross over barriers and escape from local minima during training phase, addressing the challenging small object detection problem. The experimental results highlight that our algorithm has a lower memory consumption (Mem) value than the traditional YOLOv5 with a 5% boost down. Additionally, our method runs twice as fast as the traditional YOLOv5 while preserving accuracy, achieving more than 14.5 FPS on a medium-capability CPU. Overall, the detection results prove that our method can faster and accurately classifies and localizes most small-scaled objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助冰淇淋啦啦啦采纳,获得10
刚刚
Uuuuuuumi完成签到,获得积分10
1秒前
CDQ发布了新的文献求助30
2秒前
pms完成签到,获得积分10
2秒前
xiaoyao完成签到 ,获得积分20
4秒前
乐乐应助辛勤夜柳采纳,获得10
4秒前
4秒前
劲秉应助ccboom采纳,获得10
5秒前
香蕉觅云应助眼角流星采纳,获得10
6秒前
abbyi完成签到,获得积分10
6秒前
123321发布了新的文献求助10
8秒前
8秒前
小张不在发布了新的文献求助10
8秒前
轻松小之完成签到,获得积分10
9秒前
9秒前
initial完成签到,获得积分20
9秒前
KingLancet完成签到,获得积分0
12秒前
Jy完成签到,获得积分10
12秒前
iTaciturne完成签到,获得积分10
13秒前
sci帝国发布了新的文献求助10
13秒前
大头完成签到 ,获得积分10
13秒前
14秒前
Jy发布了新的文献求助10
15秒前
16秒前
16秒前
果果应助躺赢局局长采纳,获得30
17秒前
漂亮老头发布了新的文献求助10
19秒前
眼角流星发布了新的文献求助10
19秒前
研友_rLmNXn发布了新的文献求助10
20秒前
TIGun发布了新的文献求助10
20秒前
小张不在完成签到,获得积分20
21秒前
脑洞疼应助HHHH采纳,获得10
24秒前
24秒前
英俊的铭应助天真山兰采纳,获得10
29秒前
Naruto发布了新的文献求助30
29秒前
调皮的达发布了新的文献求助10
30秒前
JOJO完成签到,获得积分10
31秒前
蛋挞完成签到 ,获得积分10
31秒前
32秒前
Clark完成签到,获得积分10
33秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211979
求助须知:如何正确求助?哪些是违规求助? 2860806
关于积分的说明 8126121
捐赠科研通 2526710
什么是DOI,文献DOI怎么找? 1360523
科研通“疑难数据库(出版商)”最低求助积分说明 643233
邀请新用户注册赠送积分活动 615424