A Novel Object Recognition Algorithm Based on Improved YOLOv5 Model for Patient Care Robots

计算机科学 最大值和最小值 机器人 人工智能 目标检测 模拟退火 背景(考古学) 算法 对象(语法) 噪音(视频) 计算机视觉 模式识别(心理学) 图像(数学) 数学分析 古生物学 数学 生物
作者
Yina Wang,Guoqiang Fu
出处
期刊:International Journal of Humanoid Robotics [World Scientific]
卷期号:19 (02) 被引量:8
标识
DOI:10.1142/s0219843622500104
摘要

The rapid development of computer vision raises a new research area involving patient care robots. Such robotic systems require fast target recognition at long ranges, where detecting smaller objects is notoriously challenging due to the cameras’ low resolution and noise. Spurred by these concerns, this paper develops a novel object recognition algorithm that solves these problems. Specifically, we amend YOLOv5 with our proposed sparse detection algorithm aiming to improve detection efficiency by separating the most significant context features and constructing smaller and less computational expensive models. Furthermore, we extend FReLU and suggest a novel activation function to improve recognition accuracy, which presents an extended nonlinearity increasing the expressiveness of the activation function. Finally, we propose sine annealing, which affords a trajectory that tends to cross over barriers and escape from local minima during training phase, addressing the challenging small object detection problem. The experimental results highlight that our algorithm has a lower memory consumption (Mem) value than the traditional YOLOv5 with a 5% boost down. Additionally, our method runs twice as fast as the traditional YOLOv5 while preserving accuracy, achieving more than 14.5 FPS on a medium-capability CPU. Overall, the detection results prove that our method can faster and accurately classifies and localizes most small-scaled objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无所谓的啦完成签到,获得积分10
2秒前
3秒前
3秒前
Allyyin发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助50
8秒前
无私的芹应助JUDY采纳,获得10
8秒前
多多完成签到,获得积分10
9秒前
baomingqiu发布了新的文献求助10
9秒前
pwh发布了新的文献求助10
9秒前
小火花关注了科研通微信公众号
10秒前
zotero完成签到,获得积分20
10秒前
11秒前
丘比特应助肖雪依采纳,获得10
12秒前
13秒前
13秒前
忧伤的冰薇完成签到 ,获得积分10
14秒前
赘婿应助啦啦啦采纳,获得10
14秒前
m(_._)m完成签到 ,获得积分0
15秒前
丘比特应助昵称采纳,获得10
15秒前
16秒前
16秒前
16秒前
李健的小迷弟应助jj采纳,获得30
16秒前
精明问筠发布了新的文献求助10
17秒前
认真的羊青完成签到,获得积分10
17秒前
流萤发布了新的文献求助10
19秒前
平淡亦云发布了新的文献求助10
19秒前
20秒前
所所应助zotero采纳,获得10
21秒前
木头人应助旷野采纳,获得10
21秒前
思源应助123采纳,获得10
22秒前
今后应助511采纳,获得10
22秒前
cz发布了新的文献求助10
23秒前
24秒前
26秒前
小谢发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350