Using Artificial Intelligence to Find the Optimal Margin Width in Hepatectomy for Colorectal Cancer Liver Metastases

医学 队列 边距(机器学习) 回顾性队列研究 结直肠癌 癌症 肝切除术 克拉斯 外科 普通外科 内科学 切除术 机器学习 计算机科学
作者
Dimitris Bertsimas,Georgios Antonios Margonis,Suleeporn Sujichantararat,Thomas Boerner,Yu Ma,Jane Wang,Carsten Kamphues,Kazunari Sasaki,Seehanah Tang,Johan Gagnière,Aurélien Dupré,Inger Marie Løes,Doris Wagner,Georgios Stasinos,Andrea Macher-Beer,Richard A. Burkhart,Daisuke Morioka,Katsunori Imai,Victoria Ardiles,Juan Manuel O’Connor,Timothy M. Pawlik,George A. Poultsides,Hendrik Seeliger,Katharina Beyer,Klaus Kaczirek,Peter Kornprat,Federico Aucejo,Eduardo de Santibañés,Hideo Baba,Itaru Endo,Per Eystein Lønning,Martin E. Kreis,Matthew J. Weiss,Christopher L. Wolfgang,Michael I. D’Angelica
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:157 (8): e221819-e221819 被引量:23
标识
DOI:10.1001/jamasurg.2022.1819
摘要

Importance

In patients with resectable colorectal cancer liver metastases (CRLM), the choice of surgical technique and resection margin are the only variables that are under the surgeon's direct control and may influence oncologic outcomes. There is currently no consensus on the optimal margin width.

Objective

To determine the optimal margin width in CRLM by using artificial intelligence–based techniques developed by the Massachusetts Institute of Technology and to assess whether optimal margin width should be individualized based on patient characteristics.

Design, Setting, and Participants

The internal cohort of the study included patients who underwent curative-intent surgery forKRAS-variant CRLM between January 1, 2000, and December 31, 2017, at Johns Hopkins Hospital, Baltimore, Maryland, Memorial Sloan Kettering Cancer Center, New York, New York, and Charité–University of Berlin, Berlin, Germany. Patients from institutions in France, Norway, the US, Austria, Argentina, and Japan were retrospectively identified from institutional databases and formed the external cohort of the study. Data were analyzed from April 15, 2019, to November 11, 2021.

Exposures

Hepatectomy.

Main Outcomes and Measures

Patients withKRAS-variant CRLM who underwent surgery between 2000 and 2017 at 3 tertiary centers formed the internal cohort (training and testing). In the training cohort, an artificial intelligence–based technique called optimal policy trees (OPTs) was used by building on random forest (RF) predictive models to infer the margin width associated with the maximal decrease in death probability for a given patient (ie, optimal margin width). The RF component was validated by calculating its area under the curve (AUC) in the testing cohort, whereas the OPT component was validated by a game theory–based approach called Shapley additive explanations (SHAP). Patients from international institutions formed an external validation cohort, and a new RF model was trained to externally validate the OPT-based optimal margin values.

Results

This cohort study included a total of 1843 patients (internal cohort, 965; external cohort, 878). The internal cohort included 386 patients (median [IQR] age, 58.3 [49.0-68.7] years; 200 men [51.8%]) withKRAS-variant tumors. The AUC of the RF counterfactual model was 0.76 in both the internal training and testing cohorts, which is the highest ever reported. The recommended optimal margin widths for patient subgroups A, B, C, and D were 6, 7, 12, and 7 mm, respectively. The SHAP analysis largely confirmed this by suggesting 6 to 7 mm for subgroup A, 7 mm for subgroup B, 7 to 8 mm for subgroup C, and 7 mm for subgroup D. The external cohort included 375 patients (median [IQR] age, 61.0 [53.0-70.0] years; 218 men [58.1%]) withKRAS-variant tumors. The new RF model had an AUC of 0.78, which allowed for a reliable external validation of the OPT-based optimal margin. The external validation was successful as it confirmed the association of the optimal margin width of 7 mm with a considerable prolongation of survival in the external cohort.

Conclusions and Relevance

This cohort study used artificial intelligence–based methodologies to provide a possible resolution to the long-standing debate on optimal margin width in CRLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dldddz完成签到,获得积分10
刚刚
二二二完成签到,获得积分20
刚刚
动听导师发布了新的文献求助10
1秒前
龙潜筱完成签到,获得积分10
1秒前
明天过后完成签到,获得积分10
1秒前
1秒前
在水一方应助weddcf采纳,获得10
1秒前
2秒前
沉默越彬完成签到,获得积分10
2秒前
Nicho发布了新的文献求助10
3秒前
3秒前
蓦然回首完成签到,获得积分10
3秒前
3秒前
Owen应助七大洋的风采纳,获得10
4秒前
4秒前
科研通AI5应助一平采纳,获得80
4秒前
wxwang完成签到,获得积分10
4秒前
廖同学完成签到 ,获得积分10
5秒前
orixero应助李家乐采纳,获得10
5秒前
6秒前
6秒前
lujiajia发布了新的文献求助10
6秒前
7秒前
啊啊啊啊啊叶完成签到 ,获得积分10
7秒前
LLL完成签到 ,获得积分10
7秒前
sanyecao383完成签到,获得积分10
7秒前
Draeck完成签到,获得积分10
8秒前
cruise完成签到,获得积分10
8秒前
在水一方应助念念采纳,获得10
8秒前
8秒前
9秒前
万能图书馆应助动听导师采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
科研通AI5应助蒋念寒采纳,获得10
10秒前
ric发布了新的文献求助200
10秒前
Li完成签到,获得积分10
10秒前
10秒前
min17完成签到,获得积分10
11秒前
11秒前
小黄发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678