Using Artificial Intelligence to Find the Optimal Margin Width in Hepatectomy for Colorectal Cancer Liver Metastases

医学 队列 边距(机器学习) 回顾性队列研究 结直肠癌 癌症 肝切除术 克拉斯 外科 普通外科 内科学 切除术 机器学习 计算机科学
作者
Dimitris Bertsimas,Georgios Antonios Margonis,Suleeporn Sujichantararat,Thomas Boerner,Yu Ma,Jane Wang,Carsten Kamphues,Kazunari Sasaki,Seehanah Tang,Johan Gagnière,Aurélien Dupré,Inger Marie Løes,Doris Wagner,Georgios Stasinos,Andrea Macher-Beer,Richard A. Burkhart,Daisuke Morioka,Katsunori Imai,Victoria Ardiles,Juan Manuel O’Connor,Timothy M. Pawlik,George A. Poultsides,Hendrik Seeliger,Katharina Beyer,Klaus Kaczirek,Peter Kornprat,Federico Aucejo,Eduardo de Santibañés,Hideo Baba,Itaru Endo,Per Eystein Lønning,Martin E. Kreis,Matthew J. Weiss,Christopher L. Wolfgang,Michael I. D’Angelica
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:157 (8): e221819-e221819 被引量:23
标识
DOI:10.1001/jamasurg.2022.1819
摘要

Importance

In patients with resectable colorectal cancer liver metastases (CRLM), the choice of surgical technique and resection margin are the only variables that are under the surgeon's direct control and may influence oncologic outcomes. There is currently no consensus on the optimal margin width.

Objective

To determine the optimal margin width in CRLM by using artificial intelligence–based techniques developed by the Massachusetts Institute of Technology and to assess whether optimal margin width should be individualized based on patient characteristics.

Design, Setting, and Participants

The internal cohort of the study included patients who underwent curative-intent surgery forKRAS-variant CRLM between January 1, 2000, and December 31, 2017, at Johns Hopkins Hospital, Baltimore, Maryland, Memorial Sloan Kettering Cancer Center, New York, New York, and Charité–University of Berlin, Berlin, Germany. Patients from institutions in France, Norway, the US, Austria, Argentina, and Japan were retrospectively identified from institutional databases and formed the external cohort of the study. Data were analyzed from April 15, 2019, to November 11, 2021.

Exposures

Hepatectomy.

Main Outcomes and Measures

Patients withKRAS-variant CRLM who underwent surgery between 2000 and 2017 at 3 tertiary centers formed the internal cohort (training and testing). In the training cohort, an artificial intelligence–based technique called optimal policy trees (OPTs) was used by building on random forest (RF) predictive models to infer the margin width associated with the maximal decrease in death probability for a given patient (ie, optimal margin width). The RF component was validated by calculating its area under the curve (AUC) in the testing cohort, whereas the OPT component was validated by a game theory–based approach called Shapley additive explanations (SHAP). Patients from international institutions formed an external validation cohort, and a new RF model was trained to externally validate the OPT-based optimal margin values.

Results

This cohort study included a total of 1843 patients (internal cohort, 965; external cohort, 878). The internal cohort included 386 patients (median [IQR] age, 58.3 [49.0-68.7] years; 200 men [51.8%]) withKRAS-variant tumors. The AUC of the RF counterfactual model was 0.76 in both the internal training and testing cohorts, which is the highest ever reported. The recommended optimal margin widths for patient subgroups A, B, C, and D were 6, 7, 12, and 7 mm, respectively. The SHAP analysis largely confirmed this by suggesting 6 to 7 mm for subgroup A, 7 mm for subgroup B, 7 to 8 mm for subgroup C, and 7 mm for subgroup D. The external cohort included 375 patients (median [IQR] age, 61.0 [53.0-70.0] years; 218 men [58.1%]) withKRAS-variant tumors. The new RF model had an AUC of 0.78, which allowed for a reliable external validation of the OPT-based optimal margin. The external validation was successful as it confirmed the association of the optimal margin width of 7 mm with a considerable prolongation of survival in the external cohort.

Conclusions and Relevance

This cohort study used artificial intelligence–based methodologies to provide a possible resolution to the long-standing debate on optimal margin width in CRLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renovel完成签到,获得积分10
2秒前
科研通AI2S应助视野胤采纳,获得10
3秒前
小米发布了新的文献求助10
4秒前
整齐凌萱发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
4秒前
6秒前
小雷完成签到,获得积分10
7秒前
8秒前
Ava应助天才小熊猫采纳,获得10
8秒前
orixero应助bloodol3采纳,获得10
9秒前
LT发布了新的文献求助30
9秒前
aa完成签到,获得积分10
11秒前
Acadia发布了新的文献求助10
11秒前
蜜雪冰城发布了新的文献求助10
12秒前
12秒前
yu完成签到 ,获得积分10
13秒前
13秒前
15秒前
19秒前
19秒前
19秒前
app完成签到 ,获得积分10
19秒前
20秒前
852应助jianning采纳,获得10
21秒前
zyj完成签到,获得积分10
21秒前
22秒前
22秒前
ertredffg完成签到,获得积分10
22秒前
zzz发布了新的文献求助10
23秒前
24秒前
美味的薯片完成签到 ,获得积分10
24秒前
Accepted应助875728314采纳,获得10
24秒前
Joey完成签到 ,获得积分10
25秒前
26秒前
26秒前
无私尔风发布了新的文献求助10
28秒前
北侨发布了新的文献求助10
28秒前
29秒前
小饼干发布了新的文献求助10
29秒前
卢西奥发布了新的文献求助10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102